Jump to content

How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn


NASA

Recommended Posts

  • Publishers
Artist's concept of the early universe
This artist’s concept shows how the universe might have looked when it was less than a billion years old, about 7 percent of its current age. Star formation voraciously consumed primordial hydrogen, churning out myriad stars at an unprecedented rate. NASA’s Nancy Grace Roman Space Telescope will peer back to the universe’s early stages to understand how it transitioned from being opaque to the brilliant starscape we see today.
NASA, ESA, and A. Schaller (for STScI)
audio-reader-band.jpg?w=1920

0:00 / 0:00

Today, enormous stretches of space are crystal clear, but that wasn’t always the case. During its infancy, the universe was filled with a “fog” that made it opaque, cloaking the first stars and galaxies. NASA’s upcoming Nancy Grace Roman Space Telescope will probe the universe’s subsequent transition to the brilliant starscape we see today –– an era known as cosmic dawn.

“Something very fundamental about the nature of the universe changed during this time,” said Michelle Thaller, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Thanks to Roman’s large, sharp infrared view, we may finally figure out what happened during a critical cosmic turning point.”

Lights Out, Lights On

Shortly after its birth, the cosmos was a blistering sea of particles and radiation. As the universe expanded and cooled, positively charged protons were able to capture negatively charged electrons to form neutral atoms (mostly hydrogen, plus some helium). That was great news for the stars and galaxies the atoms would ultimately become, but bad news for light!

It likely took a long time for the gaseous hydrogen and helium to coalesce into stars, which then gravitated together to form the first galaxies. But even when stars began to shine, their light couldn’t travel very far before striking and being absorbed by neutral atoms. This period, known as the cosmic dark ages, lasted from around 380,000 to 200 million years after the big bang.

Then the fog slowly lifted as more and more neutral atoms broke apart over the next several hundred million years: a period called the cosmic dawn.

“We’re very curious about how the process happened,” said Aaron Yung, a Giacconi Fellow at the Space Telescope Science Institute in Baltimore, who is helping plan Roman’s early universe observations. “Roman’s large, crisp view of deep space will help us weigh different explanations.”

cosmic-dawn-thumbnail-v3-narrow-flip.jpg

0:00 / 0:00

Prime Suspects

It could be that early galaxies may be largely to blame for the energetic light that broke up the neutral atoms. The first black holes may have played a role, too. Roman will look far and wide to examine both possible culprits.

“Roman will excel at finding the building blocks of cosmic structures like galaxy clusters that later form,” said Takahiro Morishita, an assistant scientist at Caltech/IPAC in Pasadena, California, who has studied cosmic dawn. “It will quickly identify the densest regions, where more ‘fog’ is being cleared, making Roman a key mission to probe early galaxy evolution and the cosmic dawn.”

The earliest stars were likely starkly different from modern ones. When gravity began pulling material together, the universe was very dense. Stars probably grew hundreds or thousands of times more massive than the Sun and emitted lots of high-energy radiation. Gravity huddled up the young stars to form galaxies, and their cumulative blasting may have once again stripped electrons from protons in bubbles of space around them.

“You could call it the party at the beginning of the universe,” Thaller said. “We’ve never seen the birth of the very first stars and galaxies, but it must have been spectacular!”

But these heavyweight stars were short-lived. Scientists think they quickly collapsed, leaving behind black holes –– objects with such extreme gravity that not even light can escape their clutches. Since the young universe was also smaller because it hadn’t been expanding very long, hordes of those black holes could have merged to form even bigger ones –– up to millions or even billions of times the Sun’s mass.

Supermassive black holes may have helped clear the hydrogen fog that permeated the early universe. Hot material swirling around black holes at the bright centers of active galaxies, called quasars, prior to falling in can generate extreme temperatures and send off huge, bright jets of intense radiation. The jets can extend for hundreds of thousands of light-years, ripping the electrons from any atom in their path.

NASA’s James Webb Space Telescope is also exploring cosmic dawn, using its narrower but deeper view to study the early universe. By coupling Webb’s observations with Roman’s, scientists will generate a much more complete picture of this era.

So far, Webb is finding more quasars than anticipated given their expected rarity and Webb’s small field of view. Roman’s zoomed-out view will help astronomers understand what’s going on by seeing how common quasars truly are, likely finding tens of thousands compared to the handful Webb may find.

A black background with stars shining throughout that range in size and color from white to gold and almost orange.
This view from the James Webb Space Telescope contains more than 20,000 galaxies. Researchers analyzed 117 galaxies that all existed approximately 900 million years after the big bang. They focused on 59 galaxies that lie in front of quasar J0100+2802, an active supermassive black hole that acts like a beacon, located at the center of the image above appearing tiny and pink with six prominent diffraction spikes. The team studied both the galaxies themselves and the illuminated gas surrounding them, which was lit up by the quasar’s bright light. The observation sheds light on how early galaxies cleared the “fog” around them, eventually leading to today’s clear and expansive views.
NASA, ESA, CSA, Simon Lilly (ETH Zürich), Daichi Kashino (Nagoya University), Jorryt Matthee (ETH Zürich), Christina Eilers (MIT), Rob Simcoe (MIT), Rongmon Bordoloi (NCSU), Ruari Mackenzie (ETH Zürich); Image Processing: Alyssa Pagan (STScI), Ruari Macken

“With a stronger statistical sample, astronomers will be able to test a wide range of theories inspired by Webb observations,” Yung said.

Peering back into the universe’s first few hundred million years with Roman’s wide-eyed view will also help scientists determine whether a certain type of galaxy (such as more massive ones) played a larger role in clearing the fog.

“It could be that young galaxies kicked off the process, and then quasars finished the job,” Yung said. Seeing the size of the bubbles carved out of the fog will give scientists a major clue. “Galaxies would create huge clusters of bubbles around them, while quasars would create large, spherical ones. We need a big field of view like Roman’s to measure their extent, since in either case they’re likely up to millions of light-years wide –– often larger than Webb’s field of view.”

Roman will work hand-in-hand with Webb to offer clues about how galaxies formed from the primordial gas that once filled the universe, and how their central supermassive black holes influenced galaxy and star formation. The observations will help uncover the cosmic daybreakers that illuminated our universe and ultimately made life on Earth possible.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

Download high-resolution video and images from NASA’s Scientific Visualization Studio

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media contact:
Claire Andreoli
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Selects Two Teams to Advance Life Sciences Research in Space 
      NASA announced two awards Thursday to establish scientific consortia – multi-institutional coalitions to conduct ground-based studies that help address the agency’s goals of maintaining a sustained human presence in space. These consortia will focus on biological systems research in the areas of animal and human models, plants, and microbiology. When fully implemented, the awards for these consortia will total about $5 million. 
      Space biology efforts at NASA use the unique environment of space to conduct experiments impossible to do on Earth. Such research not only supports the health and welfare of astronauts, but results in breakthroughs on diseases such as cancer and neurodegenerative disorders to help protect humanity down on the ground.  
      The awards for the two consortia are for the following areas:  
      Studying space biosphere. The Biology in Space: Establishing Networks for DUrable & REsilient Systems consortium involves a collaborative effort between human/animal, plant, and microbial biologists to ensure an integrated view of the space flight biosphere by enhancing data acquisition, modeling, and testing. It will include participation of more than thirty scientists and professionals working together from at least three institutions. Led by Kristi Morgansen at the University of Washington in Seattle, Washington.    Converting human waste into materials for in-space biomanufacturing. The Integrative Anaerobic Digestion and Phototrophic Biosystem for Sustainable Space Habitats and Life Supports consortium will develop an anaerobic digestion process that converts human waste into organic acids and materials that can be used for downstream biomanufacturing applications in space. It will include eight scientists from six different institutions in three different states, including Delaware and Florida. The consortium is led by Yinjie Tang at Washington University in St. Louis, Missouri.    Proposals for these consortia were submitted in response to ROSES 2024 Program Element E.11 Consortium in Biological Sciences for a consortium with biological sciences expertise to carry out research investigations and conduct activities that address NASA’s established interests in space life sciences.  
      NASA’s Space Biology Program within the agency’s Biological and Physical Sciences division conducts research across a wide spectrum of biological organization and model systems to probe underlying mechanisms by which organisms acclimate to stressors encountered during space exploration (including microgravity, ionizing radiation, and elevated concentrations of carbon dioxide). This research informs how biological systems regulate and sustain growth, metabolism, reproduction, and development in space and how they repair damage and protect themselves from infection and disease. 
      For more information about NASA’s fundamental space-based research, visit https://science.nasa.gov/biological-physical
      Share








      Details
      Last Updated Oct 17, 2024 Contact NASA Science Editorial Team Location NASA Headquarters Related Terms
      Biological & Physical Sciences For Researchers Research Opportunities in Space and Earth Sciences (ROSES) Science & Research View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague in the space station cupola. (Credit: NASA) Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
      Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
      For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      Science Launching on SpaceX's 31st Cargo Resupply Mission to the Space Station
    • By European Space Agency
      Image: VAST focus of future space frequencies View the full article
    • By NASA
      A salute is widely recognized as a display of respect, but did you know it also means ‘hello’ in American Sign Language?

      It is one of the signs that Jesse Bazley, International Space Station/Commercial Low Earth Orbit Development Program integration team lead, subtly incorporates into his daily interactions with colleagues at NASA’s Johnson Space Center in Houston.

      In May 2021, Jesse Bazley worked his final shift as an Environmental and Thermal Operating Systems flight controller in the Mission Control Center at NASA’s Johnson Space Center in Houston. Image courtesy of Jesse Bazley Bazley is hard of hearing, which has at times presented challenges in his daily work – particularly during his stint as an Environmental and Thermal Operating Systems flight controller for the space station. “Working on console [in the Mission Control Center], you must listen to dozens of voice loops at a time, sometimes in different languages,” he said, adding that the standard-issue headset for flight controllers was not compatible with his hearing aids. Bazley adapted by obtaining a headset that fit over his hearing aids, learning how to adjust the audio system’s volume, and limiting over-the-air discussions when possible.

      Bazley has been part of the NASA team for 17 years, filling a variety of roles that support the International Space Station. One of his proudest achievements occurred early in his tenure. Bazley was an intern at Marshall Space Flight Center in Huntsville, Alabama, in 2006 when the space station’s Water Recovery System was being tested. The system converts the station’s wastewater into drinkable water for the crew. When he arrived at Johnson one year later, his first assignment was to assist with the system’s procedure and display development for its incorporation into the space station’s core operations. “Now, 16 years later, it is commonplace for the space station to ‘turn yesterday’s coffee into tomorrow’s coffee’,” he said.

      Jesse Bazley supporting the Atmosphere and Consumables Engineer console during the STS-127 mission in July 2009. NASA His favorite project so far has been integrating the station’s Thermal Amine Scrubber – which removes carbon dioxide from the air – into station operations. “I worked it from the beginning of NASA’s involvement, helping the provider with software testing and the integration of a brand-new Mission Control Center communications architecture,” he said.

      Today, Bazley works to integrate subject matter experts from Johnson’s Flight Operations Directorate (FOD) into the processes of the International Space Station and Commercial Low Earth Orbit Development Programs. “I help pull together FOD positions on topics and coordinate reviews of provider materials to ensure that the operations perspective is maintained as development moves forward,” he explained.

      While Bazley no longer supports a console, he must continue adapting to difficult hearing environments. He uses the captioning tools available through videoconferencing software during frequent team meetings, for example. “It’s important to understand that people have visible and invisible disabilities,” he said. “Sometimes their request for a remote option is not because they want to avoid an in-person meeting. It may be that they work best using the features available in that virtual environment.”

      Bazley also chairs the No Boundaries Employee Resource Group, which promotes the development, inclusion, and innovation of Johnson’s workforce with a focus on employees with disabilities and employees who are caregivers of family members with disabilities.

      From these diverse roles and experiences, Bazley has learned to listen to his gut instincts. “In flight operations, you must work with short timelines when things happen in-orbit, so you have to trust your training,” he said. “Understanding when you have enough information to proceed is critical to getting things done.”

      Bazley looks forward to the further commercialization of low Earth orbit so NASA can focus resources on journeying to the Moon and Mars. “Aviation started out as government-funded and now is commonplace for the public. I look forward to seeing how that evolution progresses in low Earth orbit.”

      His advice to the Artemis Generation is to consider the long-term impact of their actions and decisions. “What looks great on paper may not be a great solution when you have to send 10 commands just to do one task, or when the crew has to put their hand deep into the spacecraft to actuate a manual override,” he said. “The decisions you make today will be felt by operations in the future.”
      View the full article
  • Check out these Videos

×
×
  • Create New...