Jump to content

Spacelab 1: A Model for International Cooperation


Recommended Posts

  • Publishers
Posted
9 Min Read

Spacelab 1: A Model for International Cooperation

Astronauts John Young and Ulf Merbold on STS-9
Astronaut John W. Young (left), STS-9 crew commander; and Ulf Merbold, payload specialist, enjoy a meal in the middeck of the Earth-orbiting Space Shuttle Columbia. Merbold is a physicist from the Federal Republic of Germany, representing the European Space Agency (ESA) on this 10-day flight.
Credits: NASA

Forty years ago, in 1983, the Space Shuttle Columbia flew its first international spaceflight, STS-9. The mission included—for the first time—the European Space Agency’s Spacelab pressurized module and featured more than 70 experiments from American, Canadian, European, and Japanese scientists. Europeans were particularly proud of this “remarkable step” because “NASA, the most famous space agency on the globe,” included the laboratory on an early Shuttle mission. NASA was equally thrilled with the Spacelab and called the effort “history’s largest and most comprehensive multinational space project.” The Spacelab became a unifying force for all the participating nations, scientists, and astronauts. As explained by one of the mission’s payload specialists, Ulf Merbold, while the principal investigators for the onboard experiments might be British or French, “there is no French science, and no British science [on this flight]. Science in itself is international.” Scientists flying on the mission, and those who had experiments on board, were working cooperatively for the benefit of humanity. As then Vice-President George H. W. Bush explained, “The knowledge Spacelab will bring back from its many missions will belong to all mankind.”1

The knowledge Spacelab will bring back from its many missions will belong to all mankind.

George H. W. Bush

George H. W. Bush

U.S. Vice President (1981–1989)

Training for the flight required international cooperation on an entirely new scale for the American space program. Today it is not unusual to hear about an astronaut training for spaceflight at many different locations and facilities across the globe. NASA’s astronauts have grown accustomed to training outside of the United States for months at a time before flying onboard the International Space Station, but that was not the experience for most of NASA’s flight crews in the agency’s early spaceflight programs. Mission training mainly took place in Houston at the Manned Spacecraft Center (now Johnson Space Center) and in Florida at the Cape. The Apollo-era featured only one international flight, the Apollo-Soyuz Test Project (ASTP), with astronauts training in the two participating nations: the USSR and the United States.

Owen Garriott and Ulf Merbold meet with George H.W. Bush inside Spacelab in 1982
Pictured from the left are astronaut Owen K. Garriott, Vice President George Bush, and Ulf Merbold of West Germany, inside Spacelab in the Operations and Checkout Building at Kennedy Space Center. This European-built orbital laboratory was formally dedicated on February 5, 1982. Merbold was one of the payload specialists on the first Spacelab flight STS-9, that launched November 28, 1983. Spacelab was a reusable laboratory that allowed scientists to perform various experiments in microgravity while orbiting Earth. Designed by the European Space Agency (ESA) and mounted in NASA’s Space Shuttle cargo bay, Spacelab flew on missions from 1983 to 1997.
NASA

It also rarely makes news these days when someone who is not a professional astronaut or cosmonaut flies in space. In the past, flying in space was a professional occupation. This all changed with the development of the Space Shuttle and Spacelab, which birthed a new space traveler: the payload specialist. The individuals selected for these positions were not career astronauts. The payload specialists were experts on a specific payload or an experiment, and during the early years of the Space Shuttle program came from a wide variety of backgrounds: the Air Force, Congress, industry, and even the field of education. The principal investigators for this science-based mission selected the payload specialists who flew in space and operated their experiments. Spacelab 1 was unique in providing the first opportunity for a non-American, a European, to fly onboard a NASA spacecraft.

In the summer of 1978, NASA chose scientist-astronauts Owen K. Garriott and Robert A. R. Parker as mission specialists for the Spacelab 1 crew. Garriott, who had been selected as an astronaut in 1965, had flown on America’s first space station as a member of the Skylab 3 crew, a team that exceeded all expectations of flight planners and principal investigators. Parker had also applied to be a scientist-astronaut and was selected in 1967. His class jokingly called themselves the “XS-11” [pronounced excess-eleven], because they had been told there was no room for them in the corps and they would not fly in space, not immediately anyway. Parker worked on Skylab as the program scientist, but once the program ended, he accepted a new title: chief of the Astronaut Office Science and Applications Directorate, where he spent the next few years working on Spacelab matters. It was perfect timing for the astronaut to turn his attention to this international program. Once Skylab ended in 1974, representatives of Europe’s Space Research Organization (ESRO) and members of ERNO, the Spacelab contractor, started traveling to Houston and Huntsville to give the two NASA centers updates on the development of the Spacelab and to hold discussions on the module. In a 1974 press conference, ESRO’s Heinz Stoewer emphasized the “very intense cooperation,” he witnessed “with our friends here in the United States in making this program come true.”2

Around the same time, as Spacelab was being built, the European Space Agency (ESA) began considering who might fly on that first flight. Three days before Christmas in 1977, ESA released the names of their four payload specialist candidates: Wubbo Ockels, Ulf Merbold, Franco Malerba, and Claude Nicollier. Two Americans, Byron K. Lichtenberg and Michael L. Lampton, were selected in the summer of 1978 as potential payload specialists.3

The Spacelab 1 payload crew, which operated the module and the mission’s experiments in the payload bay of the Orbiter, included two mission specialists, Garriott and Parker, and two payload specialists, one from the United States and another from the European Space Agency. The payload crew and their backups began training many years before the Space Shuttle Columbia launched into space on STS-9. (The original launch date of December 1980 kept slipping so the crew ended up training for five years.)4 Training in Europe began in earnest in 1978, while training in the United States and Canada began in 1979.5 Merbold was eventually selected to fly on the mission along with Lichtenberg. The entire payload crew spent so much of their time travelling to Europe that John W. Young, who was then chief of the Astronaut Office, called their flight assignment and European training, which involved travel to exotic locations like Rome, Italy, “a magnificent boondoggle. In my next life,” he declared, “I’ll be an MS [mission specialist] on S Lab [Spacelab].”6

The mission specialists and payload specialists of STS-9 poses next to a model of the Space Shuttle
Spacelab-1 prime and back-up science crew members: Mission Specialists Robert Parker and Owen Garriott, with Payload Specialist-1 Ulf Merbold, backup Payload Specialist-2 Michael Lampton, backup Payload Specialist-1 Wubbo Ockels and Payload Specialist-2 Byron Lichtenberg. 
NASA

Lichtenberg recalled the science crew, the prime and backup payload specialists and mission specialists, traveled the globe “like itinerant graduate students … to study at the laboratories of the principal investigators and their colleagues.” In these laboratories, universities, and at research centers across Europe, Canada, and Japan, they learned about the equipment and experiments, including how to repair the hardware if something broke or failed in flight. Lichtenberg felt like he was earning multiple advanced degrees in the fields of astronomy and solar physics, space plasma physics, atmospheric physics, Earth observations, life sciences, and materials science. The benefits of training were numerous, but perhaps the most important were the personal and professional relationships that were built with the investigators from across the world and with his crewmates.7

For the payload specialists, building relationships within the astronaut corps proved to be more complicated. Merbold recalled traveling to the Marshall Space Flight Center in Alabama and receiving a warm welcome. “But in Houston you could feel that not everyone was happy that Europe was involved. Some also resented the new concept of the payload specialist ‘astronaut scientist,’ who was not under their control like the pilots. We were perceived to be intruders in an area that was reserved for ‘real’ astronauts.” As an example, the European astronauts could not use the astronaut gym or take part in T-38 flight training. Over time, attitudes changed, and Garriott credited STS-9 Mission Commander John Young with the shift, and so did Merbold. As the crew was preparing to fly, the former moonwalker took Merbold on a T-38 ride, and when the payload specialist asked if he could fly the plane, Young willingly offered him the opportunity. After that flight, Merbold recalled that he “enjoyed John Young’s unqualified support.”8

Friendships blossomed on the six man-crew. Parker called Pilot Brewster H. Shaw and Commander Young “two of [his] best friends to this day.”9 For Merbold, the flight cemented a significant bond between the STS-9 astronauts. He had “no brothers, no sisters,” he was an only child, but the Columbia crew became his family. “My brothers are those guys with whom I trained and flew,” he said.10 Young and Merbold had an especially close bond. Garriott saw that relationship up close on the Shuttle, and later told an oral historian, “Young had no better friend on board our flight than Ulf Merbold.” The two remained close until Young’s death.11

Four STS-9 crewmembers play a fun game with cards during their mission.
Four of the STS-9 crewmembers enjoying a rare moment of collective fun inside the Spacelab module onboard the Columbia. Left to right are Byron K. Lichtenberg, Ulf Merbold, Robert A. R. Parker, and Owen K. Garriott. The “card table” here is the scientific airlock hatch, and the “cards” are the targets used in the Awareness of Position experiment.
NASA

Following landing, Flight Crew Operations Directorate Chief George W.S. Abbey told the crew that the science community was “very pleased.”12 The first international spaceflight since ASTP brought scientists, astronauts, and space agencies from across the globe together, laying the foundation for bringing Europe into human spaceflight operations and kicking off a different approach to training and performing science in space. As Spacelab 1 Mission Manager Henry G. Craft and Richard A. Marmann explained, the program “exemplified what can be accomplished when scientists and engineers from all over the world join forces, communicating and cooperating to further advance scientific intelligence.”13 Eventually, the international cooperation Craft and Marmann witnessed led to today’s highly successful International Space Station Program.

Notes

  1. Walter Froehlich, Spacelab: An International Short-Stay Orbiting Laboratory (Washington, DC: NASA, 1983); St. Louis Post-Dispatch, November 28, 1983.
  2. JSC News Release, “Mission Specialists for Spacelab 1 Named at JSC,” 78-34, August 1, 1978; Robert A.R. Parker, interview by author, October 23, 2002, transcript, JSC Oral History Project; “Europeans To Fly Aboard Shuttle,” Roundup, March 29, 1974, 1.
  3. “Four European Candidates Chosen for First Spacelab Flight,” ESA Bulletin (February 1978), no. 12: 62; “Two US scientists selected Spacelab payload specialists,” Roundup, June 9, 1978, 4.
  4. In the crew report, Parker counted his time monitoring the Spacelab, so he concluded that the mission specialists trained even longer, from 5 to 9 years.
  5. “Spacelab Scientists Tour USA,” Space News Roundup, January 12, 1979, 1.
  6. Harry G. Craft, Jr. to George W.S. Abbey, February 25, 1982, Spacelab 1 Payload Crew Experiment Training Requirements, Robert A.R. Parker Papers II, Box 28, JSC History Collection, University of Houston-Clear Lake.
  7. Byron Lichtenberg, “A New Breed of Space Traveller [sic],” New Scientist, August 1984, 9.
  8. ESA, “Ulf Merbold: STS-9 Payload Specialist,” November 26, 2013; ESA, “Ulf Merbold: remembering John Young [1930-2018],” August 22, 2018.
  9. Parker interview.
  10. ESA Explores, “Time and Space: ESA’s first astronaut,” podcast, November 25, 2020.
  11. Owen K. Garriott, interview by Kevin M. Rusnak, November 6, 2000, transcript, JSC Oral History Project; ESA, “Ulf Merbold: remembering John Young.”
  12. Garriott interview.
  13. Henry G. Craft, Jr., and Richard A. Marmann, “Spacelab Program’s Scientific Benefits to Mankind,” Acta Astronautica 34 (1994): 304.

About the Author

Jennifer Ross-Nazzal

Jennifer Ross-Nazzal

NASA Human Spaceflight Historian

Jennifer Ross-Nazzal is the NASA Human Spaceflight Historian. She is the author of Winning the West for Women: The Life of Suffragist Emma Smith DeVoe and Making Space for Women: Stories from Trailblazing Women of NASA's Johnson Space Center.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Download PDF: Contact Dynamics Predictions Utilizing theNESC Parameterless Contact Model

      Modeling the capture of the Mars Sample Return (MSR) Orbiting Sample (OS) involves understanding complex dynamic behavior, which includes the OS making contact against the interior of the capture enclosure. The MSR Program required numerical verification of the contact dynamics’ predictions produced using their commercial software tools. This commercial software used “free” parameters to set up the contact modeling. Free parameters (also known as free variables) are not based on contact physics. The commercial contact model used by MSR
      required seven free parameters including a Hertzian contact stiffness, surface penetration, stiffening exponent, penetration velocity, contact damping, maximum penetration depth for the contact damping value, and a smoothing function. An example of a parameter that is not free is coefficient of friction, which is a physics-based parameter. Consider the free parameter, contact stiffness. Contact stiffness is already present in the finite element model’s (FEM) stiffness matrix where the bodies come into contact, and surface penetration is disallowed in a physically realizable contact model, as FEM meshes should not penetrate one another during contact (i.e., the zero-contact limit penetration constraint condition).
      As such, with each set of selected free parameters generating a different contact force signature, additional numerical verification is required to guide setting these parameters. Contact modeling is nonlinear. This means that the stiffness matrices of contacting bodies are continuously updated as the bodies come into contact, potentially recontact (due to vibrations), and disengage. The modal properties of contacting bodies continuously change with state transitions (e.g., stick-to-slip). Some contact models have been proposed and incorporated in commercial finite element analysis solvers, and most involve static loading. A relatively smaller number involve dynamics, which has historically proven challenging.

      In 2005, NASA conducted a study testing several commercial contact solvers in predicting contact forces in transient dynamic environments. This was necessitated by the Space Shuttle Program (SSP)—after the February 2003 Columbia accident— deciding to include contact dynamics in the Space Shuttle transient coupled loads analysis (CLA) to capture the impact of contact nonlinearities. This rendered the entire CLA nonlinear. The study found major difficulties executing nonlinear CLAs in commercial software. A nonlinear solver developed by the NESC and Applied Structural Dynamics (ASD) that was able to produce physically realizable results was numerically verified by NASA and later experimentally validated as well. This nonlinear solver was subsequently utilized to execute all NASA SSP CLAs (i.e., crewed space flights) from 2005 to the final flight in 2011, as well as currently supporting the SLS Program.
      The objective of the MSR contact verification work was to provide data that could be used by the MSR team to help define the free parameters listed above for the commercial tool contact model. The NESC/ASD solver was used to model contact between simple cantilever and free beams, deriving contact forces and relative displacements. These resulting data can be used to determine parameter values for more complex structures. Two of the modeled configurations, one for axial contact (Figure 1) and the other for stick/friction (Figure 2), and sample results from the NESC nonlinear dynamic analyses are presented in Figures 1 and 2.

      For information, contact:
      Dr. Dexter Johnson dexter.johnson@nasa.gov
      Dr. Arya Majed arya.majed@nasa.gov
      View the full article
    • By NASA
      At Goddard Space Flight Center, the GSFC Data Science Group has completed the testing for their SatVision Top-of-Atmosphere (TOA) Foundation Model, a geospatial foundation model for coarse-resolution all-sky remote sensing imagery. The team, comprised of Mark Carroll, Caleb Spradlin, Jordan Caraballo-Vega, Jian Li, Jie Gong, and Paul Montesano, has now released their model for wide application in science investigations.
      Foundation models can transform the landscape of remote sensing (RS) data analysis by enabling the pre-training of large computer-vision models on vast amounts of remote sensing data. These models can be fine-tuned with small amounts of labeled training and applied to various mapping and monitoring applications. Because most existing foundation models are trained solely on cloud-free satellite imagery, they are limited to applications of land surface or require atmospheric corrections. SatVision-TOA is trained on all-sky conditions which enables applications involving atmospheric variables (e.g., cloud or aerosol).
      SatVision TOA is a 3 billion parameter model trained on 100 million images from Moderate Resolution Imaging Spectroradiometer (MODIS). This is, to our knowledge, the largest foundation model trained solely on satellite remote sensing imagery. By including “all-sky” conditions during pre-training, the team incorporated a range of cloud conditions often excluded in traditional modeling. This enables 3D cloud reconstruction and cloud modeling in support of Earth and climate science, offering significant enhancement for large-scale earth observation workflows.
      With an adaptable and scalable model design, SatVision-TOA can unify diverse Earth observation datasets and reduce dependency on task-specific models. SatVision-TOA leverages one of the largest public datasets to capture global contexts and robust features. The model could have broad applications for investigating spectrometer data, including MODIS, VIIRS, and GOES-ABI. The team believes this will enable transformative advancements in atmospheric science, cloud structure analysis, and Earth system modeling.
      The model architecture and model weights are available on GitHub and Hugging Face, respectively. For more information, including a detailed user guide, see the associated white paper: SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery. 
      Examples of image reconstruction by SatVision-TOA. Left: MOD021KM v6.1 cropped image chip using MODIS bands [1, 3, 2]. Middle: The same images with randomly applied 8×8 mask patches, masking 60% of the original image. Right: The reconstructed images produced by the model, along with their respective Structural Similarity Index Measure (SSIM) scores. These examples illustrate the model’s ability to preserve structural detail and reconstruct heterogeneous features, such as cloud textures and land-cover transitions, with high fidelity.NASAView the full article
    • By NASA
      4 min read
      Expanded AI Model with Global Data Enhances Earth Science Applications 
      On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory NASA, IBM, and Forschungszentrum Jülich have released an expanded version of the open-source Prithvi Geospatial artificial intelligence (AI) foundation model to support a broader range of geographical applications. Now, with the inclusion of global data, the foundation model can support tracking changes in land use, monitoring disasters, and predicting crop yields worldwide. 
      The Prithvi Geospatial foundation model, first released in August 2023 by NASA and IBM, is pre-trained on NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset and learns by filling in masked information. The model is available on Hugging Face, a data science platform where machine learning developers openly build, train, deploy, and share models. Because NASA releases data, products, and research in the open, businesses and commercial entities can take these models and transform them into marketable products and services that generate economic value. 
      “We’re excited about the downstream applications that are made possible with the addition of global HLS data to the Prithvi Geospatial foundation model. We’ve embedded NASA’s scientific expertise directly into these foundation models, enabling them to quickly translate petabytes of data into actionable insights,” said Kevin Murphy, NASA chief science data officer. “It’s like having a powerful assistant that leverages NASA’s knowledge to help make faster, more informed decisions, leading to economic and societal benefits.”
      AI foundation models are pre-trained on large datasets with self-supervised learning techniques, providing flexible base models that can be fine-tuned for domain-specific downstream tasks.
      Crop classification prediction generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. Focusing on diverse land use and ecosystems, researchers selected HLS satellite images that represented various landscapes while avoiding lower-quality data caused by clouds or gaps. Urban areas were emphasized to ensure better coverage, and strict quality controls were applied to create a large, well-balanced dataset. The final dataset is significantly larger than previous versions, offering improved global representation and reliability for environmental analysis. These methods created a robust and representative dataset, ideal for reliable model training and analysis. 
      The Prithvi Geospatial foundation model has already proven valuable in several applications, including post-disaster flood mapping and detecting burn scars caused by fires.
      One application, the Multi-Temporal Cloud Gap Imputation, leverages the foundation model to reconstruct the gaps in satellite imagery caused by cloud cover, enabling a clearer view of Earth’s surface over time. This approach supports a variety of applications, including environmental monitoring and agricultural planning.  
      Another application, Multi-Temporal Crop Segmentation, uses satellite imagery to classify and map different crop types and land cover across the United States. By analyzing time-sequenced data and layering U.S. Department of Agriculture’s Crop Data, Prithvi Geospatial can accurately identify crop patterns, which in turn could improve agricultural monitoring and resource management on a large scale. 
      The flood mapping dataset can classify flood water and permanent water across diverse biomes and ecosystems, supporting flood management by training models to detect surface water. 
      Wildfire scar mapping combines satellite imagery with wildfire data to capture detailed views of wildfire scars shortly after fires occurred. This approach provides valuable data for training models to map fire-affected areas, aiding in wildfire management and recovery efforts.
      Burn scar mapping generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. This model has also been tested with additional downstream applications including estimation of gross primary productivity, above ground biomass estimation, landslide detection, and burn intensity estimations. 
      “The updates to this Prithvi Geospatial model have been driven by valuable feedback from users of the initial version,” said Rahul Ramachandran, AI foundation model for science lead and senior data science strategist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This enhanced model has also undergone rigorous testing across a broader range of downstream use cases, ensuring improved versatility and performance, resulting in a version of the model that will empower diverse environmental monitoring applications, delivering significant societal benefits.”
      The Prithvi Geospatial Foundation Model was developed as part of an initiative of NASA’s Office of the Chief Science Data Officer to unlock the value of NASA’s vast collection of science data using AI. NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT), based at Marshall, IBM Research, and the Jülich Supercomputing Centre, Forschungszentrum, Jülich, designed the foundation model on the supercomputer Jülich Wizard for European Leadership Science (JUWELS), operated by Jülich Supercomputing Centre. This collaboration was facilitated by IEEE Geoscience and Remote Sensing Society.  
      For more information about NASA’s strategy of developing foundation models for science, visit https://science.nasa.gov/artificial-intelligence-science.
      Share








      Details
      Last Updated Dec 04, 2024 Related Terms
      Earth Science & Research Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      23 hours ago
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      23 hours ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      23 hours ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy speaks during an agency town hall on Sept. 21, 2021 at NASA Headquarters in Washington. Credit: NASA/Aubrey Gemignani NASA Deputy Administrator Pam Melroy and Nicola Fox, associate administrator for NASA’s Science Mission Directorate, will travel to Mexico City on Sunday, Nov. 24, for a multi-day trip to build on previous engagements and advance scientific and technological collaboration between the United States and Mexico.
      This visit will focus on fostering partnerships in astronomy and astrophysics research, as well as highlighting opportunities for economic, educational, and science, technology, engineering, and math collaborations between the two nations.
      Melroy’s trip will include high-level meetings with senior Mexican government officials, including the secretariat-designate for Science, Technology, Humanities, and Innovation. Melroy and Fox also will meet with leaders from academia, industry, and scientific institutions. These discussions will emphasize expanding cooperation in space science, with particular focus on Mexico’s growing astronomy programs.
      This visit builds on Melroy’s trip to Mexico City earlier this year and reflects NASA’s commitment to advancing international cooperation in space and science for the benefit of all.
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Amber Jacobson / Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / katherine.a.rohloff@nasa.gov
      Share
      Details
      Last Updated Nov 22, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Science Mission Directorate Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
  • Check out these Videos

×
×
  • Create New...