Members Can Post Anonymously On This Site
Hubble Captures Saturn's Double Light Show
-
Similar Topics
-
By NASA
This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away.ESA/Hubble & NASA, C. Murray The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Spies a Spiral That May Be Hiding an Imposter
The spiral galaxy UGC 5460 shines in this NASA/ESA Hubble Space Telescope image. UGC 5460 sits about 60 million light-years away in the constellation Ursa Major. ESA/Hubble & NASA, W. Jacobson-Galán, A. Filippenko, J. Mauerhan
Download this image
The sparkling spiral galaxy gracing this NASA/ESA Hubble Space Telescope image is UGC 5460, which sits about 60 million light-years away in the constellation Ursa Major. This image combines four different wavelengths of light to reveal UGC 5460’s central bar of stars, winding spiral arms, and bright blue star clusters. Also captured in the upper left-hand corner is a far closer object: a star just 577 light-years away in our own galaxy.
UGC 5460 has hosted two recent supernovae: SN 2011ht and SN 2015as. It’s because of these two stellar explosions that Hubble targeted this galaxy, collecting data for three observing programs that aim to study various kinds of supernovae.
SN 2015as was as a core-collapse supernova: a cataclysmic explosion that happens when the core of a star far more massive than the Sun runs out of fuel and collapses under its own gravity, initiating a rebound of material outside the core. Hubble observations of SN 2015as will help researchers understand what happens when the expanding shockwave of a supernova collides with the gas that surrounds the exploded star.
SN 2011ht might have been a core-collapse supernova as well, but it could also be an impostor called a luminous blue variable. Luminous blue variables are rare stars that experience eruptions so large that they can mimic supernovae. Crucially, luminous blue variables emerge from these eruptions unscathed, while stars that go supernova do not. Hubble will search for a stellar survivor at SN 2011ht’s location with the goal of revealing the explosion’s origin.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
The Death Throes of Stars
Homing in on Cosmic Explosions
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae Keep Exploring Discover More Topics From NASA
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Hubble’s Galaxies
Reshaping Our Cosmic View: Hubble Science Highlights
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Captures a Cosmic Cloudscape
This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away. ESA/Hubble & NASA, C. Murray
Download this image
The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include of bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
Caldwell 103 / Tarantula Nebula / 30 Doradus
Hubble Studies the Tarantula Nebula’s Outskirts
Hubble’s New View of the Tarantula Nebula
Hubble’s Bubbles in the Tarantula Nebula
Hubble Probes Interior of Tarantula Nebula
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Absorption or Dark Nebulae Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Star-forming Nebulae The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Exploring the Birth of Stars
Hubble’s Night Sky Challenge
Hubble Focus: The Lives of Stars
This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s Curiosity Mars rover captured these drifting noctilucent, or twilight, clouds in a 16-minute recording on Jan. 17. (This looping clip has been speeded up about 480 times.) The white plumes falling out of the clouds are carbon dioxide ice that would evaporate closer to the Martian surface.NASA/JPL-Caltech/MSSS/SSI While the Martian clouds may look like the kind seen in Earth’s skies, they include frozen carbon dioxide, or dry ice.
Red-and-green-tinted clouds drift through the Martian sky in a new set of images captured by NASA’s Curiosity rover using its Mastcam — its main set of “eyes.” Taken over 16 minutes on Jan. 17 (the 4,426th Martian day, or sol, of Curiosity’s mission), the images show the latest observations of what are called noctilucent (Latin for “night shining”), or twilight clouds, tinged with color by scattering light from the setting Sun.
Sometimes these clouds even create a rainbow of colors, producing iridescent, or “mother-of-pearl” clouds. Too faint to be seen in daylight, they’re only visible when the clouds are especially high and evening has fallen.
Martian clouds are made of either water ice or, at higher altitudes and lower temperatures, carbon dioxide ice. (Mars’ atmosphere is more than 95% carbon dioxide.) The latter are the only kind of clouds observed at Mars producing iridescence, and they can be seen near the top of the new images at an altitude of around 37 to 50 miles (60 to 80 kilometers). They’re also visible as white plumes falling through the atmosphere, traveling as low as 31 miles (50 kilometers) above the surface before evaporating because of rising temperatures. Appearing briefly at the bottom of the images are water-ice clouds traveling in the opposite direction roughly 31 miles (50 kilometers) above the rover.
Dawn of Twilight Clouds
Twilight clouds were first seen on Mars by NASA’s Pathfinder mission in 1997; Curiosity didn’t spot them until 2019, when it acquired its first-ever images of iridescence in the clouds. This is the fourth Mars year the rover has observed the phenomenon, which occurs during early fall in the southern hemisphere.
Mark Lemmon, an atmospheric scientist with the Space Science Institute in Boulder, Colorado, led a paper summarizing Curiosity’s first two seasons of twilight cloud observations, which published late last year in Geophysical Research Letters. “I’ll always remember the first time I saw those iridescent clouds and was sure at first it was some color artifact,” he said. “Now it’s become so predictable that we can plan our shots in advance; the clouds show up at exactly the same time of year.”
Each sighting is an opportunity to learn more about the particle size and growth rate in Martian clouds. That, in turn, provides more information about the planet’s atmosphere.
Cloud Mystery
One big mystery is why twilight clouds made of carbon dioxide ice haven’t been spotted in other locations on Mars. Curiosity, which landed in 2012, is on Mount Sharp in Gale Crater, just south of the Martian equator. Pathfinder landed in Ares Vallis, north of the equator. NASA’s Perseverance rover, located in the northern hemisphere’s Jezero Crater, hasn’t seen any carbon dioxide ice twilight clouds since its 2021 landing. Lemmon and others suspect that certain regions of Mars may be predisposed to forming them.
A possible source of the clouds could be gravity waves, he said, which can cool the atmosphere: “Carbon dioxide was not expected to be condensing into ice here, so something is cooling it to the point that it could happen. But Martian gravity waves are not fully understood and we’re not entirely sure what is causing twilight clouds to form in one place but not another.”
Mastcam’s Partial View
The new twilight clouds appear framed in a partially open circle. That’s because they were taken using one of Mastcam’s two color cameras: the left 34 mm focal length Mastcam, which has a filter wheel that is stuck between positions. Curiosity’s team at NASA’s Jet Propulsion Laboratory in Southern California remains able to use both this camera and the higher-resolution right 100 mm focal length camera for color imaging.
The rover recently wrapped an investigation of a place called Gediz Vallis channel and is on its way to a new location that includes boxwork — fractures formed by groundwater that look like giant spiderwebs when viewed from space.
More recently, Curiosity visited an impact crater nicknamed “Rustic Canyon,” capturing it in images and studying the composition of rocks around it. The crater, 67 feet (20 meters) in diameter, is shallow and has lost much of its rim to erosion, indicating that it likely formed many millions of years ago. One reason Curiosity’s science team studies craters is because the cratering process can unearth long-buried materials that may have better preserved organic molecules than rocks exposed to radiation at the surface. These molecules provide a window into the ancient Martian environment and how it could have supported microbial life billions of years ago, if any ever formed on the Red Planet.
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. Malin Space Science Systems in San Diego built and operates Mastcam.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-017
Share
Details
Last Updated Feb 11, 2025 Related Terms
Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
5 min read NASA-Led Study Pinpoints Areas Sinking, Rising Along California Coast
Article 1 day ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 1 day ago 3 min read NASA Explores Earth Science with New Navigational System
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
You would not expect to see NASA at a car show—but that’s exactly where Johnson Space Center employees were from Jan. 29 to Feb. 2, 2025, driving the future of space exploration forward.
At the Houston AutoBoative Show, a fusion of the auto and boat show, NASA rolled out its Artemis exhibit at NRG Center for the first time, introducing motor enthusiasts to the technologies NASA and commercial partners will use to explore more of the lunar surface than ever before.
Johnson Space Center employees present the Artemis exhibit at the 2025 Houston AutoBoative Show at NRG Center.NASA/Robert Markowitz The Artemis exhibit stood alongside some of the world’s most advanced cars and boats, offering visitors an up-close look at lunar terrain vehicle mockups from Astrolab, Intuitive Machines, and Lunar Outpost. Later this year, NASA will select the rover that will fly to the Moon as humanity prepares for the next giant leap.
In addition to the rovers, the exhibit featured a mockup of JAXA’s (Japan Aerospace Exploration Agency) pressurized rover, designed as a mobile habitat for astronauts, and Axiom Space’s lunar spacesuit, developed for Artemis III astronauts.
These capabilities will allow astronauts to explore, conduct science research, and live and work on the lunar surface.
Strategic Communications Manager for NASA’s Extravehicular Activity and Human Surface Mobility Program Tim Hall (right) shows Johnson Director Vanessa Wyche and Johnson External Relations Office Director Arturo Sanchez the Artemis booth. NASA/Robert Markowitz Johnson Director Vanessa Wyche visited the Artemis exhibit to highlight the importance of these technologies in advancing lunar exploration. Every lesson learned on the Moon will help scientists and engineers develop the strategies, technologies, and experience needed to send astronauts to Mars.
“By bringing the excitement of lunar exploration to the AutoBoative Show, NASA aims to inspire the next generation of explorers to dream bigger, push farther, and help shape humanity’s future in space,” Wyche said.
NASA’s Artemis campaign is setting the stage for long-term human exploration, working with commercial and international partners to establish a sustained presence on the Moon before progressing to Mars.
To make this vision a reality, NASA is developing rockets, spacecraft, landing systems, spacesuits, rovers, habitats, and more.
Vanessa Wyche views Axiom Space’s lunar spacesuit at the exhibit. NASA/Robert Markowitz Some of the key elements on display at the show included:
The Orion spacecraft – Designed to take astronauts farther into deep space. Orion will launch atop NASA’s Space Launch System (SLS) rocket, carrying the crew to the Moon on Artemis missions and safely returning them to Earth. Lunar terrain vehicles – Developed to transport astronauts across the rugged lunar surface or be remotely operated. NASA recently put these rover mockups to the test at Johnson, where astronauts and engineers, wearing spacesuits, ran through critical maneuvers, tasks, and emergency drills—including a simulated crew rescue. Next-gen spacesuits and tools – Through Johnson’s Extravehicular Activity and Human Surface Mobility Program, astronauts’ gear and equipment are designed to ensure safety and efficiency while working on the Moon’s surface. NASA’s Orion Program Strategic Communications Manager Radislav Sinyak (left) and Orion Communications Strategist Erika Peters guide Vanessa Wyche through navigating the Orion spacecraft to dock with the lunar space station Gateway.NASA/Robert Markowitz Guests had the chance to step into the role of an astronaut with interactive experiences like:
Driving a lunar rover simulator – Testing their skills at the wheel of a virtual Moon rover. Practicing a simulated Orion docking – Experiencing the precision needed to connect to Gateway in lunar orbit. Exploring Artemis II and III mission roadmaps – Learning about NASA’s upcoming missions and goals.
Attendees also discovered how American companies are delivering science and technology to the Moon through NASA’s Commercial Lunar Payload Services initiative.
Johnson employees from the Orion program showcase the Orion simulator at the exhibit. From left: Orion Crew and Service Module Office Crew Systems Manager Paul Boehm, Lead Admin Dee Maher, and Orion Crew and Service Module Integration Lead Mark Cavanaugh. From right: Vanessa Wyche, Erika Peters, and Radislav Sinyak.NASA/Robert Markowitz “Everyone can relate to exploration, so it was great to teach people the importance lunar rovers will have on astronauts’ abilities to explore more of the lunar surface while conducting science,” said Victoria Ugalde, communications strategist for the Extravehicular Activity and Human Surface Mobility Program, who coordinated the lunar rovers’ appearance at the show.
Check out the rovers contracted to develop lunar terrain vehicle capabilities below.
Vanessa Wyche explores Intuitive Machines’ Moon RACER rover mockup. NASA/Robert Markowitz Vanessa Wyche explores Lunar Outpost’s Eagle rover mockup. NASA/Robert Markowitz Vanessa Wyche explores Astrolab’s FLEX rover mockup. NASA/Robert Markowitz View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.