Jump to content

ESA art posters available! Download here!


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy
      Since the 1960s, astronomers have wondered how the Sun’s supersonic “solar wind,” a stream of energetic particles that flows out into the solar system, continues to receive energy once it leaves the Sun. Now, thanks to a lucky lineup of a NASA and an ESA (European Space Agency)/NASA spacecraft both currently studying the Sun, they may have discovered the answer — knowledge that is a crucial piece of the puzzle to help scientists better forecast solar activity between the Sun and Earth.
      A paper published in the Aug. 30, 2024, issue of the journal Science provides persuasive evidence that the fastest solar winds are powered by magnetic “switchbacks,” or large kinks in the magnetic field, near the Sun.
      “Our study addresses a huge open question about how the solar wind is energized and helps us understand how the Sun affects its environment and, ultimately, the Earth,” said Yeimy Rivera, co-leader of the study and a postdoctoral fellow at the Smithsonian Astrophysical Observatory, part of Center for Astrophysics | Harvard & Smithsonian. “If this process happens in our local star, it’s highly likely that this powers winds from other stars across the Milky Way galaxy and beyond and could have implications for the habitability of exoplanets.”
      This artist’s concept shows switchbacks, or large kinks in the Sun’s magnetic field. NASA’s Goddard Space Flight Center/Conceptual Image Lab/Adriana Manrique Gutierrez Previously, NASA’s Parker Solar Probe found that these switchbacks were common throughout the solar wind. Parker, which became the first craft to enter the Sun’s magnetic atmosphere in 2021, allowed scientists to determine that switchbacks become more distinct and more powerful close to the Sun. Up to now, however, scientists lacked experimental evidence that this interesting phenomenon actually deposits enough energy to be important in the solar wind.
      “About three years ago, I was giving a talk about how fascinating these waves are,” said co-author Mike Stevens, astrophysicist at the Center for Astrophysics. “At the end, an astronomy professor stood up and said, ‘that’s neat, but do they actually matter?’”
      To answer this, the team of scientists had to use two different spacecraft. Parker is built to fly through the Sun’s atmosphere, or “corona.” ESA’s and NASA’s Solar Orbiter mission is also on an orbit that takes it relatively close to the Sun, and it measures solar wind at larger distances. 
      The discovery was made possible because of a coincidental alignment in February 2022 that allowed both Parker Solar Probe and Solar Orbiter to measure the same solar wind stream within two days of each other. Solar Orbiter was almost halfway to the Sun while Parker was skirting the edge of the Sun’s magnetic atmosphere.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith An artist’s concept shows Solar Orbiter near the Sun. NASA’s Goddard Space Flight Center Conceptual Image Lab




      “We didn’t initially realize that Parker and Solar Orbiter were measuring the same thing at all. Parker saw this slower plasma near the Sun that was full of switchback waves, and then Solar Orbiter recorded a fast stream which had received heat and with very little wave activity,” said Samuel Badman, astrophysicist at the Center for Astrophysics and the other co-lead of the study. “When we connected the two, that was a real eureka moment.”
      Scientists have long known that energy is moved throughout the Sun‘s corona and the solar wind, at least in part, through what are known as “Alfvén waves.” These waves transport energy through a plasma, the superheated state of matter that makes up the solar wind.
      However, how much the Alfvén waves evolve and interact with the solar wind between the Sun and Earth couldn’t be measured — until these two missions were sent closer to the Sun than ever before, at the same time. Now, scientists can directly determine how much energy is stored in the magnetic and velocity fluctuations of these waves near the corona, and how much less energy is carried by the waves farther from the Sun.
      The new research shows that the Alfvén waves in the form of switchbacks provide enough energy to account for the heating and acceleration documented in the faster stream of the solar wind as it flows away from the Sun. 
      “It took over half a century to confirm that Alfvenic wave acceleration and heating are important processes, and they happen in approximately the way we think they do,” said John Belcher, emeritus professor from the Massachusetts Institute of Technology who co-discovered Alfvén waves in the solar wind but was not involved in this study.
      In addition to helping scientists better forecast solar activity and space weather, such information helps us understand mysteries of the universe elsewhere and how Sun-like stars and stellar winds operate everywhere.
      “This discovery is one of the key puzzle pieces to answer the 50-year-old question of how the solar wind is accelerated and heated in the innermost portions of the heliosphere, bringing us closer to closure to one of the main science objectives of the Parker Solar Probe mission,” said Adam Szabo, Parker Solar Probe mission science lead at NASA.
      By Megan Watzke
      Center for Astrophysics | Harvard & Smithsonian
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Orbiter Solar Science Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Zooms into the Rosy Tendrils of Andromeda


      Article


      2 hours ago
      2 min read Hubble Observes An Oddly Organized Satellite


      Article


      1 day ago
      6 min read NASA Discovers a Long-Sought Global Electric Field on Earth
      An international team of scientists has successfully measured a planet-wide electric field thought to be…


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Discover where space begins: the guide to ESA’s establishments

      View the full article
    • By European Space Agency
      This is ESA: your perfect introduction to what Europe does in space

      View the full article
    • By NASA
      In the heart of NASA’s Johnson Space Center in Houston, a team of photographers, imagery acquisition specialists, analytic scientists, and graphic designers work together to create visual narratives that capture the defining moments of space exploration with creativity and precision. 

      From the Apollo missions to the Artemis campaign, these images, videos, and graphics chronicle NASA’s rich history and the people behind its monumental missions. 
      Official portrait of the Artemis II crew.NASA/Josh Valcarcel Each team at Johnson within Mission Imagery, the ISAG (Image Science and Analysis Group), and NASA’s OCOMM (Office of Communications) plays a role in this effort, ensuring the accuracy and artistry of visual narratives that have inspired generations.  

      “Behind every great leap for mankind, there is the courage, determination, and teamwork of people committed to pushing the boundaries of what’s possible,” said NASA photographer Josh Valcarcel.  
      Space Shuttle Enterprise atop the Shuttle Carrier Aircraft as it flies over New York City on April 27, 2012. NASA/Robert Markowitz “We consider ourselves exceptionally fortunate to contribute our passion to an esteemed agency, aiming to evoke joy and enduring memories through our imagery,” said NASA photographer Robert Markowitz.  

      Operating eight camera systems, the imagery acquisition group captures a range of visuals, from HD video and high-speed digital motion pictures to spherical 360 panoramas. These visuals document everything from engineering tests to astronaut training and mission control operations. The team is certified to fly on parabolic flights, T-38 jets, and helicopters, capturing pivotal moments in space exploration history. 

      “The duty to bear witness to events or conversations and preserve these moments in time – not only for those who cannot, but for the record books – is a noble cause,” said NASA photographer Helen Arase Vargas.  

      After capturing the imagery, the photo operations team processes these visuals using advanced software to enhance quality, perform color correction, and ensure they meet NASA’s high standards. Every frame is meticulously archived, including photos taken by astronauts aboard the International Space Station, preserving them for future generations. 

      “None of what we deliver would be possible without the work of the photo laboratory,” said Mark Sowa, the imagery acquisition group lead who brings over three decades of experience in scientific photography to his role.  
      The team also manages the care and handling of original Apollo mission films, which are preserved in a specially built cold storage vault. The goal is to preserve Apollo era spaceflight films – in both the digital and physical formats – for generations to come. 
      The cold storage film vault at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz The ISAG is charged with a different but equally critical mission. This team of scientists performs complex and in-depth analysis of engineering imagery. Their work involves evaluating space vehicle performance, dynamic events, and anomalies by measuring distances, sizes, motion, and hardware conditions to uncover crucial mission insights.  

      Their data visualization techniques bring these analyses to life, contributing to successful mission execution.

      “At NASA we often say ‘the camera is the mission’ because in every image, there’s a story to be told – whether it’s one of engineering analysis or human inspiration,” said Dr. Kenton Fisher, the ISAG lead. “Our work helps ensure crew safety and provides insights that drive the next giant leap in space exploration.”
      The Artemis I test flight marks the safe return of the Orion spacecraft to Earth.NASA/Josh Valcarcel NASA’s Orion spacecraft for Artemis I after splashdown in the Pacific Ocean on December 11, 2022.NASA/James Blair NASA’s OCOMM graphics team works closely with the imagery acquisition group, astronauts, and subject matter experts to create visuals that symbolize NASA’s missions and values.

      From patches to educational infographics, their art reaches museums and schools nationwide, inspiring future generations and showcasing NASA’s commitment to exploration, innovation, and education. 
      A compilation of NASA’s graphics team highlights from 2023. “Every design we create is a piece of a larger narrative, helping to tell the story of space exploration in a way that’s engaging and accessible to everyone,” said Sean Collins, Johnson’s lead graphic designer. 

      The collaborative efforts of these teams ensure that NASA’s achievements are not just recorded but celebrated worldwide. 
      NASA team members participate in the National Collegiate Athletic Association Championship Game opening flag ceremonies on January 8, 2024, at NRG Stadium. NASA/Helen Arase Vargas NASA photographer Bill Stafford recalls a moment of awe when capturing the Moon juxtaposed with the U.S. flag above the Mission Control Center, a symbol of America’s space achievements. 

      “I feel a weight because my job is important,” he said. “I want people to look at my pictures and see what I was able to see.” 
      The Moon juxtaposed with the U.S. flag above the Mission Control Center at NASA’s Johnson Space Center in Houston. NASA/Bill Stafford A T-38 formation flyover as NASA’s Space Launch System rocket sits on the launch pad at Kennedy Space Center in Florida.NASA/Josh Valcarcel Space Shuttle Endeavour is ferried by NASA’s Shuttle Carrier Aircraft over Ellington Field on September 20, 2012.NASA/Bill Stafford Neil Armstrong speaks at the Rotary National Award for Space Achievement dinner in Houston, Texas. NASA/Bill Stafford Expedition 1 crew members (from left) William Shepherd, Yuri Gudzenko and Sergei Krikalev train in the building 9 shuttle Crew Compartment Trainer on May 12, 2000. NASA/James Blair NASA T-38 aircraft are parked on the flight line at Ellington Field during sunrise, May 7, 2005.NASA/James Blair A NASA engineer installs VIPER’s (Volatiles Investigating Polar Exploration Rover) starboard radiator in Johnson’s clean room. NASA/Helen Arase Vargas Engineers work in the VIPER (Volatiles Investigating Polar Exploration Rover) clean room at Johnson Space Center. NASA/Helen Arase Vargas The cast members from the Apollo 13 movie in zero gravity aboard NASA’s KC-135 aircraft.NASA/Robert Markowitz NASA astronaut John Glenn on his second spaceflight as part of the STS-95 crew.NASA/Robert Markowitz  View the full article
  • Check out these Videos

×
×
  • Create New...