Jump to content

Department of the Air Force takes action on barriers to mental health, wellness, resilience


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Space Force senior leaders traveled to Europe for meetings with defense and military space leaders from Norway, Sweden, and NATO to reaffirm and strengthen space security cooperation.

      View the full article
    • By NASA
      NASA NASA pilot Joe Walker sits in the pilot’s platform of the Lunar Landing Research Vehicle (LLRV) number 1 on Oct. 30, 1964. The LLRV and its successor the Lunar Landing Training Vehicle (LLTV) provided the training tool to simulate the final 200 feet of the descent to the Moon’s surface.
      The LLRVs, humorously referred to as flying bedsteads, were used by NASA’s Flight Research Center, now NASA’s Armstrong Flight Research Center in California, to study and analyze piloting techniques needed to fly and land the Apollo lunar module in the moon’s airless environment.
      Learn more about the LLRV’s first flight.
      Image credit: NASA
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      About 20,000 guests visited NASA’s tent at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024. NASA Lee esta historia en Español aquí.
      In September, the three NASA centers in California came together to share aerospace innovations with thousands of guests at the Miramar Air Show in San Diego, California. Agency experts talked about the exciting work NASA does while exploring the secrets of the universe for the benefit of all.
      Under a large tent near the airfield, guests perused exhibits from different centers and projects, like a model of the Innovator rover or the Alta-X drone, from Sept. 27 through 29. Agency employees from NASA’s Armstrong Flight Research Center in Edwards, California; Ames Research Center in Moffett Field, California; and Jet Propulsion Laboratory (JPL) in Southern California guided guests through tours and presentations and shared messages about NASA missions.
      “The airshow is about the people just as much as it is about the aircraft and technology,” said Derek Abramson, chief engineer for the Subscale Flight Research Laboratory at NASA Armstrong. “I met many new people, worked with an amazing team, and developed a comradery with other NASA centers, talking about what we do here as a cohesive organization.”
      Experts like flight controls engineer Felipe Valdez shared the NASA mission with air show guests, and explained the novelty of airborne instruments like the Alta-X drone at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA On Sept. 29, pilots from Armstrong joined the event to take photos with guests and answer questions from curious or enthusiastic patrons. One air show guest had a special moment with NASA pilot Jim Less.
      “One of my favorite moments was connecting with a young man in his late teens who stopped by the exhibit tent numerous times, all in hopes of being able to meet Jim Less, our X-59 pilot,” said Kevin Rohrer, chief of Communications at NASA Armstrong. “It culminated with a great conversation with the two and Jim [Less] autographing a model of the X-59 aircraft the young man had been carrying around.”
      “I look forward to this tradition continuing, if not at this venue, at some other event in California,” Rohrer continued. “We have a lot of minds hungry and passionate to learn more about all of NASA missions.”
      The Miramar Air Show is an annual event that happens at the Miramar Air Base in San Diego, California.
      Professionals like Leticha Hawkinson, center right, and Haig Arakelian, center left, shared learning and career opportunities for NASA enthusiasts visiting the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA Share
      Details
      Last Updated Oct 30, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Ames Research Center Careers Events Jet Propulsion Laboratory What We Do Explore More
      3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
      Article 18 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago 10 min read Ken Iliff: Engineering 40 Years of Success
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aircraft Flown at Armstrong
      Armstrong People
      Armstrong Capabilities & Facilities
      View the full article
    • By European Space Agency
      Image: The construction phase of ESA’s Ariel mission has started at Airbus Defence and Space in Toulouse (France) with the assembly of the spacecraft’s structural model. This marks a significant step forward for this mission designed to meticulously inspect the atmospheres of a thousand exoplanets and uncover their nature.
      In the image we see Ariel’s structural model coming together at the Airbus facilities. This model replicates the mechanical framework of the spacecraft and the mass of its various units for a first round of tough testing.
      The Ariel’s structural model consists of two main components: a flight-like replica of the service module (bottom right) and a simplified mechanical mock-up of the payload module (top right). This assembly mimics the structure of the flight spacecraft, where the science instruments make up the payload while the service module houses the essential components for the functioning of the spacecraft, such as the propulsion, and the power and communication systems.
      The goal for the end of the year is to complete the mechanical test campaign of the spacecraft’s structural model. This will ensure that Ariel’s design is up-to-spec and can withstand the mechanical strains expected during launch.
      The testing phase will include vibration and acoustic test campaigns. During vibration tests the model will be progressively shaken at different strengths on a vibrating table, or 'the shaker'. During acoustic tests, it will be placed in a reverberating chamber and ‘bombarded’ with very intense noise, like it will encounter during launch.
      This model will also be used to assess how the loads are distributed and to perform a first ‘separation and shock’ test using the same mounting system as will be used to mount the spacecraft on the Ariane 6.
      When ready, Ariel will be launched by an Ariane 6.2 rocket and journey to the second Lagrangian Point from where it will carry out its uniquely detailed studies of remote worlds.
      Image description: A collage of three photographs that show the assembly of the model of a spacecraft in a large white hall. The first image on the left shows the entire model, with a person next to it who is nearly equal in height. The second image on the upper right zooms in on the top part of the mock science instrument: a circular fan-like structure with a big rectangular silver box on top. The third image on the lower right focuses on the bottom of the model, which looks like a large round silver box.
      View the full article
    • By NASA
      5 min read
      NASA Science on Health, Safety to Launch on 31st SpaceX Resupply Mission
      New science experiments for NASA are set to launch aboard the agency’s SpaceX 31st commercial resupply services mission to the International Space Station. The six investigations aim to contribute to cutting-edge discoveries by NASA scientists and research teams. The SpaceX Dragon spacecraft will liftoff aboard the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Science experiments aboard the spacecraft include a test to study smothering fires in space, evaluating quantum communications, analyzing antibiotic-resistant bacteria, examining health issues like blood clots and inflammation in astronauts, as well as growing romaine lettuce and moss in microgravity.
      Developing Firefighting Techniques in Microgravity
      Putting out a fire in space requires a unique approach to prioritize the safety of the spacecraft environment and crew. The SoFIE-MIST (Solid Fuel Ignition and Extinction – Material Ignition and Suppression Test) is one of five investigations chosen by NASA since 2009 to develop techniques on how to contain and put out fires in microgravity. Research from the experiment could strengthen our understanding of the beginning stages of fire growth and behavior, which will assist in building and developing more resilient space establishments and creating better plans for fire suppression in space
      NASA astronaut Jessica Watkins services components that support the SOFIE (Solid Fuel Ignition and Extinction) fire safety experiment inside the International Space Station’s combustion integrated rack Credit: NASA Combating Antibiotic Resistance
      Resistance to antibiotics is as much of a concern for astronauts in space as it is for humans on Earth. Research determined that the impacts of microgravity can weaken a human’s immune system during spaceflight, which can lead to an increase of infection and illness for those living on the space station.
      The GEARS (Genomic Enumeration of Antibiotic Resistance in Space) investigation scans the orbiting outpost for bacteria resistant to antibiotics and these organisms are studied to learn how they thrive and adapt to microgravity. Research results could help increase the safety of astronauts on future missions as well as provide clues to improving human health on Earth.
      A sample media plate pictured aboard the International Space Station. The GEARS (Genomic Enumeration of Antibiotic Resistance in Space) investigation surveys the orbiting laboratory for antibiotic-resistant organisms. Genetic analysis could provide knowledge that informs measures to protect astronauts on future long-duration missions Credit: NASA Understanding Inflammation and Blood Clotting
      Microgravity takes a toll on the human body and studies have shown that astronauts have had cases of inflammation and abnormally regulated blood clotting. The MeF-1 (Megakaryocytes Orbiting in Outer Space and Near Earth: The MOON Study (Megakaryocyte Flying-One)) investigation will conduct research on how the conditions in microgravity can impact the creation and function of platelets and bone-marrow megakaryocytes. Megakaryocytes, and their progeny, platelets, are key effector cells bridging the inflammatory, immune, and hemostatic continuum.
      This experiment could help scientists learn about the concerns caused by any changes in the formation of clots, inflammation, and immune responses both on Earth and during spaceflight.
      A scanning electron-microscopy image of human platelets taken at the NASA Space Radiation Laboratory NASA Space Radiation Laboratory Building the Space Salad Bar
      The work continues to grow food in the harsh environment of space that is both nutritious and safe for humans to consume. With Plant Habitat-07, research continues on ‘Outredgeous’ romaine lettuce, first grown on the International Space Station in 2014.
      This experiment will sprout this red lettuce in microgravity in the space station’s Advanced Plant Habitat and study how optimal and suboptimal moisture conditions impact plant growth, nutrient content, and the plant microbiome. The knowledge gained will add to NASA’s history of growing vegetables in space and could also benefit agriculture on Earth.
      Pace crop production scientist Oscar Monje harvests Outredgeous romaine lettuce for preflight testing of the Plant Habitat-07 experiment inside a laboratory at the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida NASA/Ben Smegelsky Mixing Moss with Space Radiation
      ARTEMOSS (ANT1 Radiation Tolerance Experiment with Moss in Orbit on the Space Station) continues research that started on Earth with samples of Antarctic moss that underwent simulated solar radiation at the NASA Space Radiation Lab at Brookhaven National Lab in Upton, New York.
      After exposure to radiation some of the moss samples will spend time on the orbiting outpost in the microgravity environment and some will remain on the ground in the 1g environment. ARTEMOSS will study how Antarctic moss recovers from any potential damage from ionizing radiation exposure when plants remain on the ground and when plants grow in spaceflight microgravity. This study leads the way in understanding the effects of combined simulated cosmic ionizing radiation and spaceflight microgravity on live plants, providing more clues to plant performance in exploration missions to come.  
      An example of moss plants grown for the ARTEMOSS mission Credit: NASA Enabling Communication in Space Between Quantum Computers
      The SEAQUE (Space Entanglement and Annealing Quantum Experiment) will experiment with technologies that, if successful, will enable communication on a quantum level using entanglement. Researchers will focus on validating in space a new technology, enabling easier and more robust communication between two quantum systems across large distances. The research from this experiment could lead to developing building blocks for communicating between equipment such as quantum computers with enhanced security.
      A quantum communications investigation, called SEAQUE (Space Entanglement and Annealing Quantum Experiment), is pictured as prepared for launch to the International Space Station on NASA’s SpaceX 31st commercial resupply services mission. The investigation is integrated on a MISSE-20 (Materials International Space Station Experiment) device, which is a platform for experiments on the outside of space station exposing instrumentation directly to the space environment. SEAQUE will conduct experiments in quantum entanglement while being exposed to the radiation environment of space Credit: NASA Related resources:
      SoFIE-MIST (Solid Fuel Ignition and Extinction – Material Ignition and Suppression Test) SoFIE (Solid Fuel Ignition and Extinction) | Glenn Research Center | NASA GEARS Space Station to Host ‘Self-Healing’ Quantum Communications Tech Demo – NASA MeF1 (Megakaryocyte Flying-One) ARTEMOSS NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      Explore More
      3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon


      Article


      22 hours ago
      2 min read NASA Reveals Prototype Telescope for Gravitational Wave Observatory


      Article


      2 days ago
      2 min read Hubble Captures a New View of Galaxy M90


      Article


      6 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...