Jump to content

Elements: FIRE


Recommended Posts

Elements_FIRE_card_full.png Video: 00:33:08

The summer fire season is well under way in Europe – countries all around the Mediterranean are experiencing record temperatures coupled with huge wildfires that have led to mass evacuations. In this enthralling new ESA documentary, explore how people on the frontline are using space to better monitor and fight the flames.

Follow the incredible stories of the firefighters who dealt with unprecedented fires in Gironde, France, and the forest officers using satellite data to plan for the forests’ recovery. Journey into the heart of Earth's elemental might and discover how space is changing the game for monitoring volcanic eruptions too – including one of the world’s most studied volcano, Mount Etna.

FIRE is the first episode of ESA’s new series centred around the elements and showcases how Earth observation has become crucial to those fighting climate change on the ground.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jacquelyn Shuman visually assesses a prescribed fire at Ft. Stewart in Georgia, working with partner organizations as part of the Department of Defense Ft. Stewart 2024 Fire Research Campaign. USFS/Linda Chappell Jacquelyn Shuman, FireSense Project Scientist at NASA Ames Research Center, originally wanted to be a veterinarian. By the time she got to college, Shuman had switched interests to biology, which became a job teaching middle and high school science. Teaching pivoted to finance for a year, before Shuman returned to the science world to pursue a PhD.

      It was in a forest ecology class taught by her future PhD advisor, Herman “Hank” Shugart, that she first discovered a passion for ecosystems and dynamic vegetation that led her into the world of fire science, and eventually to NASA Ames.

      While Shuman’s path into the world of fire science was not a direct one, she views her diverse experiences as the key to finding a fulfilling career. “Do a lot of different things and try a lot of different things, and if one thing isn’t connecting with you, then do something different,” Shuman said.

      Diving into the World of Fire

      Shuman’s PhD program focused on boreal forest dynamics across Russia, examining how the forest changes in response to climate change and wildfire. During her research, she worked mainly with scientists from Russia, Canada, and the US through the Northern Eurasia Earth Science Partnership Initiative (NEESPI), where Shugart served as the NEESPI Chief Scientist. “The experience of having a highly supportive mentor, being a part of the NEESPI community, and working alongside other inspiring female scientists from across the globe helped me to stay motivated within my own research,” Shuman said.

      After completing her PhD, Shuman wanted to become involved in collaborative science with a global impact, which led her to the National Center for Atmospheric Research (NCAR). There, she spent seven years working as a project scientist on the Next Generation Ecosystem Experiment NGEE-Tropics) on a dynamic vegetation model project called FATES (Functionally Assembled Terrestrial Ecosystem Simulator). As part of the FATES team, Shuman used computer modeling to test vegetation structure and function in tropical and boreal forests after wildfires, and was the lead developer for updating the fire portion of the model.

      This figure shows fire characteristics from an Earth system model that uses vegetation structure and interactive fire. The FATES model captures the fire intensity associated with burned land and grass growth in the Southern Hemisphere. Shuman et al. 2024 GMD Fire has also played a powerful role in Shuman’s personal life. In 2021, the Marshall Fire destroyed neighborhoods near her hometown of Boulder, Colorado, causing over $513 million of damage and securing its place as the state’s most destructive wildfire. Despite this, Shuman is determined to not live in fear. “Fire is part of our lives, it’s a part of the Earth system, and it’s something we can plan for. We can live more sustainably with fires.” The way to live safely in a fire-inclusive ecosystem, according to Shuman, is to develop ways to accurately track and forecast wildfires and smoke, and to respond to them efficiently: efforts the fire community is continuously working on improving.

      The Fire Science Community

      Collaboration is a critical element of wildland fire management. Fire science is a field that involves practitioners such as firefighters and land managers, but also researchers such as modelers and forecasters; the most effective efforts, according to Shuman, come when this community works together. “People in fire science might be out in the field and carrying a drip torch and marching along in the hilltops and the grasslands or be behind a computer and analyzing remote sensing data,” Shuman said. “We need both pieces.”

      Protecting communities from wildfire impacts is one of the most fulfilling aspects of Shuman’s career, and a goal that unites this community. “Fire research poses tough questions, but the people who are thinking about this are the people who are acting on it,” Shuman said. “They are saying, ‘What can we do? How can we think about this? What information do we need? What are the questions?’ It’s a special community to be a part of.”

      Looking to the Future of Fire

      Currently at NASA Ames Research Center, Shuman is the Project Scientist for FireSense: a project focused on delivering NASA science and technology to practitioners and operational agencies. Shuman acts as the lead for the project office, identifying and implementing tools and strategies. Shuman still does ecosystem modeling work, including implementing vegetation models that forecast the impact of fire, but also spends time traveling to active fires across the country so she can help partners implement NASA tools and strategies in real time.

      FireSense Project Scientist Jacquelyn Shuman stands with Roger Ottmar (United States Forest Service), surveying potential future locations for prescribed burns in Fishlake National Forest. NASA Ames/Milan Loiacono
      “Right now, many different communities are all recognizing that we can partner to identify the best path forward,” Shuman said. “We have an opportunity to use everyone’s strengths and unique perspectives. It can be a devastating thing for a community and an ecosystem when a fire happens. Everyone is interested in using all this collective knowledge to do more, together.”


      Written by Molly Medin, NASA Ames Research Center

      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      General Earth Science Earth Science Division Explore More
      4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
      Article 18 hours ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
      Article 19 hours ago 7 min read What is a Coral Reef?
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Fire Science Landing Page
      FireSage
      San José State University (SJSU) and NASA Ames Research Center are offering the FireSage Program; a premier summer internship opportunity designed to equip students with expertise in fire ecology and remote sensing technologies. This 10-week internship program offers a paid opportunity to work on-site at NASA Ames Earth Science Division and SJSU’s Wildfire Interdisciplinary Research Center (WIRC) Geofly Lab and FireEcology Lab. Here, interns will be introduced to cutting-edge technologies and methodologies for wildfire research and management and benefit from a comprehensive learning environment including a one-on-one setting with NASA Scientists and SJSU Faculty.
      Learn More About the FireSage Internship
      Fire & Air
      Ames Research Center and California State University, Stanislaus (CSUStan) are partnering together to offer the Fire & Air program: a yearlong internship for CSUStan undergraduates, with opportunities to work with both NASA Subject Matter Experts and CSUStan MSI Mentors. The program focuses on two main research areas: atmospheric effects and causes of wildfires, and the study of aerosols in biomass burning.
      Learn More About the Fire and Air Internship
      Back to Fire Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Earth Science Earth Science Division Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Fire Science Landing Page FireSense
      The FireSense project is focused on delivering NASA’s unique Earth science and technological capabilities to operational agencies, striving to address challenges in US wildland fire management. The project concentrates on four use-cases to support decisions before, during, and after wildland fires. These include the measurement of pre-fire fuels conditions, active fire dynamics, post fire impacts and threats, as well as air quality forecasting, each co-developed with identified wildland fire management agency stakeholders.

      Strategic Tac Radio and Tac Overwatch (STRATO)
      The Strategic Tac Radio and Tac Overwatch (STRATO) system is designed to provide real-time fire observations and last-mile communications with firefighters from stratospheric platforms. By providing persistent communications to a wildfire response team for a week or longer, STRATO is expected to offer capabilities beyond the currently used tethered balloons, which have a limited range and coverage area. By achieving station-keeping at altitudes up to 70,000 feet above ground level—to be demonstrated in flight testing—the STRATO will be able to provide communications to incident response teams in areas with no cellphone coverage.

      Surface Biology and Geology (SBG)


      Arctic Boreal Vulnerability Experiment (ABoVE)
      Climate change in the Arctic and Boreal region is unfolding faster than anywhere else on Earth, resulting in reduced Arctic sea ice, thawing of permafrost soils, decomposition of long- frozen organic matter, widespread changes to lakes, rivers, coastlines, and alterations of ecosystem structure and function. NASA’s Terrestrial Ecology Program is conducting a major field campaign, the Arctic-Boreal Vulnerability Experiment (ABoVE), in Alaska and western Canada, from 2015 – 2025. ABoVE seeks a better understanding of the vulnerability and resilience of ecosystems and society to this changing environment.

      Tactical Fire Remote Sensing Advisory Committee (TFRSAC)


      Embracing CSDA-Supported Spaceborne SAR Data in NASA FireSense Airborne Campaigns
      This project aims to determine the capability of Umbra X-band Synthetic Aperture Radar (SAR) data to characterize rapidly changing fire landscapes during NASA’s FireSense airborne campaigns.

      Opti-SAR
      Opti-SAR is focused on accurate and timely mapping of forest structure and aboveground biomass (AGB) with integrated space-based optical and radar observations. This project will make a fundamental contribution to an integrated Earth System Observatory by using the mathematical foundation of RADAR-VSPI and VSPI to integrate SAR and optical data to achieve breakthroughs in forest monitoring and assessment.

      Tropospheric Regional Atmospheric Composition and Emissions Reanalysis – 1 (TRACER-1)
      TRACER-1 is a 20-year atmospheric composition re-analysis product that will enable researchers to answer questions about changes in wildfire emissions and the impact of extreme wildfire events on regional air quality. Active dates: 2005 – 2024

      Cultural Burning
      The Indigenous People’s Initiative partners with indigenous groups in the US and across the world, many of whom practice a long history of cultural burning.

      Back to Fire Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The NASA Ames Fire Department will conduct emergency response fire training on the west ramp of the Moffett Federal Airfield between 8 a.m. and 8 p.m. PDT Tuesday, Sept. 10 through Saturday, Sept. 14. The media and the public are advised that sirens may be audible and smoke plumes and flames may be visible from U.S. Highway 101 during this time. However, officials generally expect little to no smoke.
      The session will include a live burn created by a propane-fueled aircraft fire simulator at the field. The drill is intended to prepare Ames fire responders and Ames Emergency Operations Center staff for real-life fire emergencies.
      For more information about NASA’s Ames Research Center, visit: 
      https://www.nasa.gov/ames
      -end-
      Rachel Hoover
      Ames Research Center, Silicon Valley
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A fire burns in Fishlake National Forest, as part of the Fall 2023 FASMEE prescribed burn. NASA/ Grace Weikert Background
      Fire is a natural occurrence in many ecosystems and can promote ecological health. However, wildfires are growing in scope and occurring more often than in the past. Among other causes this is due to human-caused climate impacts and the expansion of communities into areas with wildland vegetation. These blazes continue to significantly harm communities, public health, and natural ecosystems. NASA is leveraging cutting-edge science and technology to better understand wildland fire behavior and provide valuable tools for fire policy, response, and mitigation. 
      NASA’s Stake in Wildfire
      NASA’s contributions to wildland fire management span decades. This includes research to better understand the role fire plays in Earth’s dynamic atmosphere, and airborne and spaceborne sensors to analyze fire lifecycles. Much of this research and technology is still used by wildfire agencies across the globe today. NASA is building on this research and technology development with the Wildland Fire Management Initiative (WMI).  
      WMI leverages expertise across the Agency in space technology, science, and aeronautics to improve wildfire research and response. Through this effort, NASA and its partners will continue to provide tools and technologies for improved predictive fire modeling, risk assessment, fire prevention, suppression and post-fire recovery operations. NASA’s WMI aims to equip responders with improved tools for managing these fires
      How NASA is Tackling Wildfire

      NASA is collaborating with other government agencies, academia, and commercial industries to build a concept of operations for the future of wildland fire management. This means identifying gaps in current wildland fire technologies and procedures and laying out clear solutions to address those challenges.  
      NASA will perform a demonstration of wildland fire technologies – including X – in the coming years. 
      To provide a well-rounded toolkit for improving wildland operations, NASA and is tackling every aspect of wildland fire response. These efforts include: 
      Pre-Fire 
      Fuel fire maps with improved accuracy   Tools that identify where and when safe, preventative burn treatments would be most effective  Airspace management and safety technologies to enable mainstream use of uncrewed aircraft systems in prescribed burns  Active Fire 
      Fire detection and tracking imagery   Improved fire information management systems  Models for changing fire conditions, including fire behavior, and wind and atmospheric tracking for quality forecasts  Uncrewed aircraft and high-altitude balloons for real-time communications for fighting fires in harsh environments  Uncrewed Aircraft Systems Traffic Management (UTM) to expand use of uncrewed aircraft systems in fire response, particularly in environments where traditional air traffic control technologies aren’t available  An airspace awareness and communications system to enable remotely piloted aircraft to identify, monitor, and suppress wildfires 24 hours a day  Post-Fire 
      Improved fire impact assessments, including fire severity, air and water quality, risks of landslides, debris flows, and burn scars  Ground-based, airborne, and spaceborne observations to develop monitoring systems for air quality and map burn severity and develop and enhance models and predictions of post-fire hazards  NASA’s Disasters Response Coordination System (DRCS) supports all three fire response aspects listed above. The DRCS, developed under the Agency’s Earth Science Division’s Disasters Program, provides decisional support to international and domestic operational response agencies. This support includes products for understanding wildfire movement and potential pathways, burn-area maps, and impacts of fire, ash, and smoke to population and critical infrastructure. DCRS tools also provide assessments of post-fire flooding and debris flow susceptibility. 
      NASA’s Investment in New Wildland Fire Technologies  
      NASA’s WMI offers grants, contracts, and prizes to small businesses, research institutions, and other wildland technology innovators. Some related technology development activities underway include: 
      Testing communications technologies for incident response teams in areas with no cellphone coverage via a high-altitude balloon 60,000 feet above ground level  Developing wildfire detection systems and instruments for crewed and uncrewed aircraft   Funding early-stage technology development for remote sensing instruments and sensor systems  Developing and flight testing integrated, compact systems for small spacecraft and other platforms for autonomous detection, location tracking, and data collection of transient smoke plumes, early wildfires and other events  Licensing technologies relevant to wildland fire management and hosting wildland fire webinars to promote NASA technology licensing  Partners 
      The NASA Wildland Fire Management Initiative team collaborates with industry, academia, philanthropic institutions, and other government agencies for a more fire-resilient future. These include:  
      U.S. Forest Service  The California Department of Forestry and Fire Protection  The National Oceanic and Atmospheric Administration  The Federal Aviation Administration  The Department of Homeland Security  The Department of Defense  The National Wildfire Coordinating Group  WMI Deliverables
      Through these combined efforts, NASA aims to address urgent wildland fire management challenges and ensure communities are better prepared for wildland fires. NASA will continue to expand partnerships within wildland fire management agencies for technology development and adoptions. 
      For more information, email: Agency-WildlandFiresInitiative@mail.nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...