Members Can Post Anonymously On This Site
Crew-7: crew news conference
-
Similar Topics
-
By NASA
Researchers demonstrated the feasibility of 3D bioprinting a meniscus or knee cartilage tissue in microgravity. This successful result advances technology for bioprinting tissue to treat musculoskeletal injuries on long-term spaceflight or in extraterrestrial settings where resources and supply capacities are limited.
BFF Meniscus-2 evaluated using the BioFabrication Facility to 3D print knee cartilage tissue using bioinks and cells. The meniscus is the first engineered tissue of an anatomically relevant shape printed on the station. Manufactured human tissues have potential as alternatives to donor organs, which are in short supply. Bioprinting in microgravity overcomes some of the challenges present in Earth’s gravity, such as deformation or collapse of tissue structures.
A human knee meniscus 3D bioprinted in space using the International Space Station’s BioFabrication Facility.Redwire Complex cultures of central nervous system cells known as brain organoids can be maintained in microgravity for long periods of time and show faster development of neurons than cultures on Earth. These findings could help researchers develop treatments for neurodegenerative diseases on Earth and address potential adverse neurological effects of spaceflight.
Cosmic Brain Organoids examined growth and gene expression in 3D organoids created with neural stem cells from individuals with primary progressive multiple sclerosis and Parkinson’s disease. Results could improve understanding of these neurological diseases and support development of new treatments. Researchers plan additional studies on the underlying causes of the accelerated neuron maturation.
Neural growth in brain organoids that spent more than a month in space. Jeanne Frances Loring, National Stem Cell Foundation Researchers demonstrated that induced pluripotent stem cells (iPSCs) can be processed in microgravity using off the-shelf cell culture materials. Using standard laboratory equipment and protocols could reduce costs and make space-based biomedical research accessible to a broader range of scientists and institutions.
Stellar Stem Cells Ax-2 evaluated how microgravity affects methods used to generate and grow stem cells into a variety of tissue types on the ground. iPSCs can give rise to any type of cell or tissue in the human body, and insight into processing in space could support their use in regenerative medicine and future large-scale biomanufacturing of cellular therapeutics in space.
NASA astronaut Peggy Whitson, an Axiom Mission 2 crew member, works on stem cell research on a previous mission. NASA/Shane KimbroughView the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Members of the cast and crew of “Ain’t Too Proud – The Life and Times of the Temptations” pose for a photo inside of the 8-foot high-temperature tunnel at NASA’s Langley Research Center in Hampton, Virginia. NASA/David C. Bowman Get Ready! Members of the cast and crew of the Broadway national touring production of “Ain’t Too Proud – The Life and Times of The Temptations,” visited NASA’s Langley Research Center in Hampton, Virginia on Nov. 6, where they learned more about the center’s work in air, space, and science. The show was in the area performing at the Ferguson Center for the Arts in Newport News.
The group met with center leadership and members of Langley’s workforce and toured Langley’s historic hangar, 8-Foot High-Temperature Tunnel, Inflatable Habitats, and the ISAAC (Integrated Structural Assembly of Advanced Composites) robot.
Share
Details
Last Updated Nov 07, 2024 Related Terms
Langley Research Center Explore More
4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
Article 1 day ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
Article 1 week ago 4 min read NASA Pilots Add Perspective to Research
Article 3 weeks ago Keep Exploring Discover Related Topics
Ames Research Center
Vertical Motion Simulator
NASA Ames Unitary Plan Wind Tunnel
Ames Media Resources
View the full article
-
By NASA
Bioprinted patches could help wounds heal
Researchers successfully demonstrated the function of a handheld bioprinter that could provide a simple and effective way to treat wounds in space using human skin cells. Crews could use this technology to treat their own injuries and protect crew health and mission success in the future.
Spaceflight can affect how wounds heal. The Bioprint FirstAid device tested a process for bioprinting a patch to cover a wound and accelerate healing. In the future, a crew member’s own cells may be used to create personalized patches for treating an injury. The bioprinting device is easy to use, can be tailored to specific needs, has a low failure rate, and its mechanics are electronics- and maintenance-free. This ESA (European Space Agency) investigation was coordinated by the German Aerospace Center (DLR).
ESA (European Space Agency) astronaut Matthias Maurer demonstrates the Bioprint FirstAid prototype during preflight training. German Aerospace Center/European Space Agency Countering post-flight proficiency challenges
The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and the ability to multitask in simulated flying and driving challenges. This finding could help develop countermeasures so crew members can safely land and conduct early operations on the Moon and Mars.
Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function after landing. Researchers concluded that subtle physiological changes that occur during spaceflight degrade post-flight performance. Subsequent tests showed recovery of performance once exposed to the task, suggesting that simulation training immediately before a task could be an effective countermeasure. Researchers also suggest limiting dual or competing tasks during mission-critical phases.
A simulator used to test crew members’ ability to fly and drive after spaceflight. NASA Gamma-ray telescope resilient to space radiation
Researchers found that the station’s Glowbug gamma-ray telescope could perform in the space radiation environment for multi-year missions. Radiation can affect these types of instruments, but Glowbug regularly detected gamma ray bursts (GRBs) during its one-year operation. Studying GRBs can help scientists better understand the universe and its origins.
Glowbug demonstrated technology to detect and characterize cosmic GRBs, primarily short GRBs, which result from mergers of compact binary star systems containing either two neutron stars or a neutron star and a black hole. Short GRBs produce gravitational waves, ripples in space that travel at the speed of light. Studying these gravitational waves could provide insight into the star systems where they originate and the behavior of matter during the mergers.
Learn more about GRB research here.
View the full article
-
By NASA
NASA’s SpaceX Crew-8 at the agency’s Kennedy Space Center in Florida. Pictured left to right, Roscosmos cosmonaut Alexander Grebenkin, NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps.Credit: SpaceX After spending 235 days in space, NASA’s SpaceX Crew-8 astronauts will discuss their science mission aboard the International Space Station during a post-flight news conference at 3:15 p.m. EST Friday, Nov. 8, from the agency’s Johnson Space Center in Houston.
NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps will answer questions about their mission. The three crew members, along with Roscosmos cosmonaut Alexander Grebenkin, returned to Earth on Oct. 25. Grebenkin will not participate because of his travel schedule.
NASA will provide live coverage on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of additional platforms, including social media.
Media are invited to attend in-person or virtually. For in-person attendance, media must contact the NASA Johnson newsroom no later than 5 p.m. Thursday, Nov. 7 at: jsccommu@mail.nasa.gov or 281-483-5111. Media participating by phone must dial into the news conference no later than 10 minutes prior to the start of the event to ask questions. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is available on the agency’s website.
The crew spent more than seven months in space, including 232 days aboard the orbiting laboratory, traveling nearly 100 million miles, and completing 3,760 orbits around Earth. While living and working aboard station, the crew completed hundreds of science experiments and technology demonstrations.
Get the latest NASA space station news, images, and features on Instagram, Facebook, and X.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Jimi Russell / Claire O’Shea
Headquarters, Washington
202-358-1100
james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov
Raegan Scharfetter
Johnson Space Center, Houston
281-910-4989
raegan.r.scharfetter@nasa.gov
Share
Details
Last Updated Nov 01, 2024 LocationNASA Headquarters Related Terms
Commercial Crew Astronauts Humans in Space International Space Station (ISS) ISS Research Jeanette J. Epps Johnson Space Center Matthew Dominick Michael R. Barratt View the full article
-
By NASA
Better Monitoring of the Air Astronauts Breathe
Ten weeks of operations showed that a second version of the Spacecraft Atmosphere Monitor is sensitive enough to determine variations in the composition of cabin air inside the International Space Station. Volatile organic compounds and particulates in cabin air could pose a health risk for crew members, and this device increases the speed and accuracy of assessing such risk.
Spacecraft Atmosphere Monitor is a miniaturized gas chromatograph mass spectrometer used to analyze the air inside the space station and ensure that it is safe for the crew and equipment. The device automatically reports results to the ground, eliminating the need to return samples to Earth. This version has several other technological advances, including that it can be relocated, is smaller, and uses less power.
The first Spacecraft Atmosphere Monitor device on the International Space Station. NASA/Chris Cassidy Digging Deeper into Microgravity Effects on Muscle
Prolonged exposure to microgravity affects human muscle precursor cells known as satellite cells and causes changes in the expression of specific genes involved in muscle structure and nerves. Exercise regimens on the space station do not adequately prevent or counteract muscle loss in astronauts, which can affect their motor function during missions and after return to Earth. Results could inform design of nutritional and pharmacological countermeasures to muscle changes during spaceflight.
Muscle loss represents a major obstacle to human long-term spaceflight. Myogravity, an investigation developed with the Italian space agency ASI, looked at microgravity-induced changes in adult stem cells involved in the growth, maintenance, and repair of skeletal muscle tissue, known as satellite cells. These cells may play a major role in muscle loss during spaceflight.
European Space Agency astronaut Paolo Nespoli sets up the Myogravity experiment. NASA Validating Next-Generation Earth Measurements
Researchers completed a preliminary evaluation of the station’s Hyperspectral Imager Suite (HISUI) and report that the difference between model-corrected and actual measurements is small. Validation of spaceborne optical sensors like HISUI is important to demonstrate they provide the accuracy needed for scientific research.
The JAXA (Japan Aerospace Exploration Agency) HISUI investigation tests a next-generation spaceborne hyperspectral Earth imaging system for gathering data on reflection of light from Earth’s surface, which reveals characteristics and physical properties of a target area. This technology has potential applications such as monitoring vegetation and identifying natural resources.
The Hyperspectral Imager Suite is visible on the far left in this image outside the space station. NASAView the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.