Jump to content

NASA’s Juno Spacecraft Flies Past Io and Jupiter, With Music by Vangelis


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      An aerial image from 1965 shows the dual flame trenches of the Thad Cochran Test Stand (B-1/B-2) under construction at NASA’s Stennis Space Center (then known as Mississippi Test Operations) taking shape.NASA/Stennis Since the United States sent the first humans to the Moon more than 60 years ago, NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has answered the call to help power the nation’s space dreams.  
      “History shows NASA Stennis is the country’s premier rocket engine test site and the go-to place for propulsion testing,” NASA Stennis Director John Bailey said. “It started with Apollo and continued through space shuttle. Now, we are going back to the Moon and beyond with Artemis – and it all comes through NASA Stennis.” 
      As the nation raced to send the first humans to the Moon, NASA selected a remote location in Hancock County, Mississippi, in October 1961 to test the needed rocket stages. Thanks to a massive construction project, the site conducted its first Saturn V rocket stage test in April 1966. In the next four-plus years, NASA Stennis tested 27 Saturn V stages, including those that launched 12 astronauts to walk on the Moon.  
      “Talking to people working here during those years, you hear how much they believed in the mission,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “Their hard work helped America reach the Moon and showed us the possibilities for NASA Stennis.”   
      Construction workers bring down a tree during the early days of construction for NASA’s Stennis Space Center. Tree-cutting to start what was the largest construction project in Mississippi – and one of the largest in the United States – at the time began May 17, 1963.NASA/Stennis NASA Stennis (then known as the Mississippi Test Facility) conducts its first-ever test firing – a 15-second hot fire of the Saturn V S-II-C second stage prototype – on the A-2 Test Stand on April 23, 1966.NASA/Stennis An aerial image from early 1967 shows the completed A-2 Test Stand in the foreground and the Thad Cochran Test Stand (B-1/B-2) in the background at NASA’s Stennis Space Center, then known as the Mississippi Test Facility.NASA/Stennis NASA officials view the first space shuttle main engine test on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center (then known as National Space Technology Laboratories) on May 19, 1975.NASA/Stennis A 1979 image offers a close-up view of a space shuttle main propulsion test article hot fire on the B-2 side of the Thad Cochran Test Stand at NASA’s Stennis Space Center (then known as National Space Technology Laboratories). Main propulsion test article testing involved installing a shuttle fuel tank, a mockup of the shuttle orbiter and the vehicle’s three-engine configuration on the stand, then firing all three engines simultaneously, as would be done during an actual launch.NASA/Stennis As Apollo missions neared an end, plans were underway to drastically reduce the NASA Stennis footprint. Enter the space shuttle. NASA considered three locations to test engines for its new reusable vehicle before selecting NASA Stennis on March 1, 1970, ensuring the center’s future for the next several decades.  
      Space shuttle main engine testing proved challenging as the site transitioned from handling full rocket stages to firing single engines. “A big part of the challenge was the fact that teams were testing an entire engine from the very start,” NASA Test Operations Chief Maury Vander said. “Typically, you begin testing components, then progress to a full engine. Teams had a lot to learn in real time.” 
      NASA Stennis teams also tested the shuttle Main Propulsion Test Article with three engines firing simultaneously. The testing was particularly critical given the first shuttle mission would carry astronauts. 
      NASA Stennis teams worked diligently to demonstrate the shuttle system would operate safely, an effort characterized as one of the site’s finest hours. Following the first shuttle mission in 1981, astronauts Robert Crippen and John Young visited the south Mississippi site. “The effort that you contributed made it possible for us to sit back and ride,” Crippen told NASA Stennis employees. 
      From 1975 to 2009, NASA Stennis tested every main engine to help power 135 shuttle missions that enabled historic missions, such as those that deployed and repaired the Hubble Space Telescope and assembled the International Space Station, enabling its many scientific experiments and spinoff technologies. The site also tested every engine and component upgrade and helped troubleshoot performance issues. It led test campaigns following shuttle accidents to help ensure safe returns to flight. In total, the site conducted 2,307 tests for 820,475.68 seconds of accumulated hot fire. 
      NASA conducts the final test of a space shuttle main engine on the A-2 Test Stand at NASA’s Stennis Space Center on July 29, 2009. The Space Shuttle Program concluded two years later with the STS-135 shuttle mission.  NASA / Stennis An on-stand camera offers a closeup view of the first test of an RS-25 engine on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Jan. 9, 2015. RS-25 engines power the core stage of NASA’s powerful SLS (Space Launch System) rocket.NASA/Stennis Crews at NASA’s Stennis Space Center install the first core stage of NASA’s powerful SLS (Space Launch System) on the B-2 side of the Thad Cochran Test Stand on Jan. 21-22, 2020. Following testing, the stage would help launch the Artemis I mission in November 2022.NASA/Stennis NASA conducts a full-duration RS-25 hot fire April 3, 2024, on the Fred Haise Test Stand at NASA’s Stennis Space Center, achieving a major milestone for future Artemis flights of NASA’s SLS (Space Launch System) rocket. It marked the final hot fire of a 12-test series to certify production of new RS-25 engines by lead contractor L3Harris (formerly known as Aerojet Rocketdyne) to help power NASA’s SLS rocket on Artemis missions to the Moon and beyond, beginning with Artemis V.NASA/Stennis Even as NASA Stennis tested main engines to power shuttle missions, the site led in testing next-generation engines, including the Fastrac, XRS-2200 linear aerospike, and J-2X. It also developed its E Test Complex, with multiple test stands and cells, to support a range of component and engine test projects, including those of commercial aerospace companies.
      A landmark agreement between NASA Stennis and Aerojet Rocketdyne (now known as L3Harris) in 1998 marked the site’s first test partnership with such a company. “That was the starting point,” said Vander. “Today, we are a preferred partner for multiple companies and test projects, large and small.” 
      NASA Stennis also is testing RS-25 engines and related systems to help power NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon. When the agency travels to Mars, it is expected the missions will launch with engines tested at the Mississippi site as well. 
      “The Gulf Coast of Mississippi helped achieve our space dreams of the past, and NASA Stennis continues supporting today’s dreams,” Bailey said. “It is a true testament to the expertise and dedication of our entire team and the incredible support of surrounding communities and the whole state.” 
      For information about NASA’s Stennis Space Center, visit: 
      Stennis Space Center – NASA 
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      Teams with NASA and Lockheed Martin prepare to conduct testing on NASA’s Orion spacecraft on Thursday, Nov. 7, 2024, in the altitude chamber inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. Lockheed Martin/David Wellendorf Teams lifted NASA’s Orion spacecraft for the Artemis II test flight out of the Final Assembly and System Testing cell and moved it to the altitude chamber to complete further testing on Nov. 6 inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida.
      Engineers returned the spacecraft to the altitude chamber, which simulates deep space vacuum conditions, to complete the remaining test requirements and provide additional data to augment data gained during testing earlier this summer.
      The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
      Image credit: Lockheed Martin/David Wellendorf
      View the full article
    • By NASA
      Citizen science projects enabled by data from the WISE and NEOWISE missions have given hundreds of thousands around the world the opportunity to make new discoveries. The projects can be done by anyone with a laptop and internet access and are available in fifteen languages. No U.S. citizenship required. NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) spacecraft re-entered and burned up in Earth’s atmosphere on Friday night, as expected. Launched in 2009 as the WISE mission, the spacecraft has been mapping the entire sky at infrared wavelengths over and over for nearly fifteen years. During that time, more than one hundred thousand amateur scientists have used these data in citizen science projects like the Milky Way Project, Disk Detective, Backyard Worlds: Planet 9, Backyard Worlds: Cool Neighbors, and Exoasteroids. 
      This citizen science work has led to more than 55 scientific publications. Highlights include:
      The discovery of Yellowballs, a kind of compact star-forming region. The discovery of Peter Pan Disks, long lived accretion disks around low-mass stars. The discovery of the first extreme T subdwarfs. The likely discovery of an aurora on a brown dwarf. Measurement of the field substellar mass function down to effective temperature ~400 K. The discovery of the oldest known white dwarf with a disk. Detection of a possible collision between planets. The discovery of the lowest-mass hypervelocity star. Although the spacecraft is no longer in orbit, there is plenty of work to do. The WISE/NEOWISE data contain trillions of detections of astronomical sources – enough to keep projects like Disk Detective, Backyard Worlds: Planet 9, Backyard Worlds: Cool Neighbors, and Exoasteroids busy making new discoveries for years to come. Join one of these projects today to help unravel the mysteries of the infrared universe!
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Nov 04, 2024 Related Terms
      Astrophysics Citizen Science Explore More
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow


      Article


      1 hour ago
      6 min read NASA’s Hubble, Webb Probe Surprisingly Smooth Disk Around Vega


      Article


      3 days ago
      5 min read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair


      Article


      4 days ago
      View the full article
    • By NASA
      Flight operations engineer Carissa Arillo helped ensure one of the instruments on NASA’s PACE mission made it successfully through its prelaunch testing. She and her group also documented the work rigorously, to ensure the flight team had a comprehensive manual to keep this Earth-observing satellite in good health for the duration of its mission.
      Carissa M. Arillo is a flight operations engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Carissa Arillo Name: Carissa M. Arillo
      Formal Job Classification: Flight Operations Engineer
      Organization: Environmental Test Engineering and Integration Branch (Code 549)
      What do you do and what is most interesting about your role here at Goddard?
      I developed pre-launch test procedures for the HARP-2 instrument for the Phytoplankton, Aerosol, Cloud and Ecosystem (PACE) Mission. HARP-2 is a wide angle imaging polarimeter designed to measure aerosol particles and clouds, as well as properties of land and water surfaces.
      I also developed the flight operations routine and contingency procedures that governed the spacecraft after launch. It is interesting to think about how to design procedures that can sustain the observatory in space for the life of the mission so that the flight operations team that inherits the mission will have a seamless transition.
      What is your educational background?
      In 2019, I got a Bachelor of Science in mechanical engineering from the University of Maryland, College Park. I am currently pursuing a master’s in robotics there as well.
      Why did you become an engineer?
      I like putting things together and understanding how they work. After starting my job at NASA Goddard, I became interested in coding and robotics.
      How did you come to Goddard?
      After getting my undergraduate degree, I worked at General Electric Aviation doing operations management for manufacturing aircraft engines. When I heard about an opening at Goddard, I applied and got my current position.
      What was involved in developing pre-launch test procedures for the HARP-2 instrument?
      I talked to the instrument manufacturer, which is a team from the University of Maryland, Baltimore County, and asked them what they wanted to confirm works every time we tested the instrument. We kept in constant communication while developing these test procedures to make sure we covered everything. The end product was code that was part of the comprehensive performance tests, the baseline tests throughout the prelaunch test campaign. Before, during, and after each prelaunch environmental test, we perform such a campaign. These prelaunch environmental tests include vibration, thermal (hot and cold), acoustic and radio frequency compatibility (making sure that different subsystems do not interfere with each other’s).
      What goes through your head in developing a flight operations procedure for an instrument?
      I think about a safe way of operating the instrument to accomplish the goals of the science team. I also think about not being able to constantly monitor the instrument. Every few hours, we can communicate with the instrument for about five to 10 minutes. We can, however, recover all the telemetry for the off-line time.
      When we discover an anomaly, we look at all the history that we have and consult with our contingency procedures, our failure review board and potentially the instrument manufacturer. Together we try to figure out a recovery.
      When developing a fight operations procedure, we must think of all possible scenarios. Our end product is a written book of procedures that lives with the mission and is updated as needed.
      New cars come with an owner’s manual. We create the same sort of manual for the new instrument.
      As a Flight Operations Team member, what else do you do?
      The flight operations team runs the Mission Operations Center — the “MOC” — for PACE. That is where we command the spacecraft for the life of the mission. My specialty is the HARP-2 instrument, but I still do many supporting functions for the MOC. For example, I helped develop procedures to automate ground station contacts to PACE. These ground stations are positioned all over the world and enable us to talk with the spacecraft during those five to 10 minutes of communication. This automation includes the standard things we do every time we talk to the spacecraft whether or not someone is in the MOC.
      Carissa developed pre-launch test procedures for the HARP-2 instrument for the Phytoplankton, Aerosol, Cloud and Ecosystem (PACE) Mission. HARP-2 is a wide angle imaging polarimeter designed to measure aerosol particles and clouds, as well as properties of land and water surfaces.NASA/Dennis Henry How does it feel to be working on such an amazing mission so early in your career?
      It is awesome, I feel very lucky to be in my position. Everything is new to me. At times it is difficult to understand where the ship is going. I rely on my experienced team members to guide me and my robotics curriculum in school to equip me with skills.
      I have learned a lot from both the flight operations team and the integration and test team. The flight operations team has years of experience building MOCs that serve the needs of each unique mission. The integration and test team also has a lot of experience developing observatory functional procedures. I wish to thank both teams for taking me under their wings and educating me on the fly to support the prelaunch, launch and post-launch campaigns. I am very grateful to everyone for giving me this unbelievable opportunity.
      Who is your engineering hero?
      I don’t have one hero in particular but I love biographical movies that tell stories about influential people’s lives, such as the movie “Hidden Figures” that details the great endeavors and accomplishments of three female African-American mathematicians at NASA.
      What do you do for fun?
      I love to go to the beach and spend time with family and friends.
      Who is your favorite author?
      I like Kristen Hannah’s storytelling abilities.
      What do you hope to be doing in five years?
      I hope to be working on another exciting mission at Goddard that will bring us never-before-seen science.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Explore More
      7 min read Meloë Kacenelenbogen Eyes the Future of Air Quality, Climate Research
      Article 1 week ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 2 weeks ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
      Article 3 weeks ago Share
      Details
      Last Updated Oct 29, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) People of Goddard People of NASA View the full article
    • By NASA
      Learn Home Europa Trek: NASA Offers a New… Europa Clipper Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon
      NASA’s Europa Clipper mission is on its way to explore a moon of Jupiter that researchers believe may be one of the best places in the Solar System to search for life beyond Earth. While the spacecraft makes its more-than-five year journey to Europa, scientists, students, teachers, and the public can tour and explore the landforms of Europa with newly-released enhancements to NASA’s Europa Trek web portal.
      One of the largest of Jupiter’s nearly 100 recognized moons, Europa is covered with a global ice cap. But beneath that crust of ice, researchers have found an ocean of liquid water, estimated to have about twice the volume of all of Earth’s oceans combined. This vast amount of liquid water is of particular interest to astrobiologists, scientists studying the origin, evolution, and distribution of life in the Universe. Though Europa’s ocean remains hidden beneath its global crust of ice, we can get important clues about its nature by studying the remarkable landforms of Europa’s icy surface.
      To accompany the launch of Europa Clipper, NASA’s Solar System Treks Project released exciting new enhancements to its online Europa Trek portal on September 30, 2024. The new additions to Europa Trek allow users to interactively fly over and explore high-resolution imagery of Europa’s surface from the Voyager, Galileo, and Juno missions. Users can also take a new guided tour of Europa’s amazing landforms, with commentary developed by a collaboration between NASA’s Astrobiology Science Communication Guild and NASA’s Solar System Exploration Research Virtual Institute. The tour and its commentary introduce virtual explorers to the geology and possible biological significance of the diverse features of Europa’s surface.
      “This is really fun. It’s cool how you can zoom into the high resolution data. I’ll spread the word about using this!” – Bob Pappalardo, Europa Clipper Project Scientist
      The new tour and capabilities of Europa Trek were featured at the Europa Clipper public launch program at the Kennedy Space Center Visitor Center on October 6,2024, in advance of the October 14 launch of the mission. As part of the public program conducted by NASA’s Planetary Mission Program Office, the Europa Trek exhibit allowed hundreds of visitors to try their hands at flying over Europa and visualizing its exotic terrain.
      NASA’s Solar System Treks is an infrastructure project within NASA’s Science Activation Team. Their online portals are used for mission planning, planetary science research, and Science, Technology, Engineering, & Mathematics (STEM) education. NASA’s Astrobiology Science Communication Guild is an international, community-based network of astrobiologists who engage in science communication with diverse audiences and learners. Watch for future collaborations between Solar System Treks and the Astrobiology Science Communication Guild at more locations across the Solar System!
      Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A stop along the guided tour of Europa landforms Share








      Details
      Last Updated Oct 23, 2024 Editor NASA Science Editorial Team Related Terms
      Europa Europa Clipper Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      5 min read Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip
      How NASA’s DAVINCI mission to Venus uses old data to reveal new secrets.


      Article


      6 days ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      2 weeks ago
      4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...