Members Can Post Anonymously On This Site
Satellites unveil the far-reaching impact of irrigation
-
Similar Topics
-
By NASA
Scientists predict one of the major surveys by NASA’s upcoming Nancy Grace Roman Space Telescope may reveal around 100,000 celestial blasts, ranging from exploding stars to feeding black holes. Roman may even find evidence of some of the universe’s first stars, which are thought to completely self-destruct without leaving any remnant behind.
This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.Credit: NASA’s Goddard Space Flight Center and M. Troxel Cosmic explosions offer clues to some of the biggest mysteries of the universe. One is the nature of dark energy, the mysterious pressure thought to be accelerating the universe’s expansion.
“Whether you want to explore dark energy, dying stars, galactic powerhouses, or probably even entirely new things we’ve never seen before, this survey will be a gold mine,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, who led a study about the results. The paper is published in The Astrophysical Journal.
Called the High-Latitude Time-Domain Survey, this observation program will scan the same large region of the cosmos every five days for two years. Scientists will stitch these observations together to create movies that uncover all sorts of cosmic fireworks.
Chief among them are exploding stars. The survey is largely geared toward finding a special class of supernova called type Ia. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion because they peak at about the same intrinsic brightness. Figuring out how fast the universe has ballooned during different cosmic epochs offers clues to dark energy.
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.Credit: NASA, ESA, CSA, and STScI In the new study, scientists simulated Roman’s entire High-Latitude Time-Domain Survey. The results suggest Roman could see around 27,000 type Ia supernovae—about 10 times more than all previous surveys combined.
Beyond dramatically increasing our total sample of these supernovae, Roman will push the boundaries of how far back in time we can see them. While most of those detected so far occurred within approximately the last 8 billion years, Roman is expected to see vast numbers of them earlier in the universe’s history, including more than a thousand that exploded more than 10 billion years ago and potentially dozens from as far back as 11.5 billion years. That means Roman will almost certainly set a new record for the farthest type Ia supernova while profoundly expanding our view of the early universe and filling in a critical gap in our understanding of how the cosmos has evolved over time.
“Filling these data gaps could also fill in gaps in our understanding of dark energy,” Rose said. “Evidence is mounting that dark energy has changed over time, and Roman will help us understand that change by exploring cosmic history in ways other telescopes can’t.”
But type Ia supernovae will be hidden among a much bigger sample of exploding stars Roman will see once it begins science operations in 2027. The team estimates Roman will also spot about 60,000 core-collapse supernovae, which occur when a massive star runs out of fuel and collapses under its own weight.
That’s different from type Ia supernovae, which originate from binary star systems that contain at least one white dwarf — the small, hot core remnant of a Sun-like star — siphoning material from a companion star. Core-collapse supernovae aren’t as useful for dark energy studies as type Ias are, but their signals look similar from halfway across the cosmos.
“By seeing the way an object’s light changes over time and splitting it into spectra — individual colors with patterns that reveal information about the object that emitted the light—we can distinguish between all the different types of flashes Roman will see,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore County working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and a co-author of the study.
“With the dataset we’ve created, scientists can train machine-learning algorithms to distinguish between different types of objects and sift through Roman’s downpour of data to find them,” Hounsell added. “While searching for type Ia supernovae, Roman is going to collect a lot of cosmic ‘bycatch’—other phenomena that aren’t useful to some scientists, but will be invaluable to others.”
Hidden Gems
Thanks to Roman’s large, deep view of space, scientists say the survey should also unearth extremely rare and elusive phenomena, including even scarcer stellar explosions and disintegrating stars.
Upon close approach to a black hole, intense gravity can shred a star in a so-called tidal disruption event. The stellar crumbs heat up as they swirl around the black hole, creating a glow astronomers can see from across vast stretches of space-time. Scientists think Roman’s survey will unveil 40 tidal disruption events, offering a chance to learn more about black hole physics.
The team also estimates Roman will find about 90 superluminous supernovae, which can be 100 times brighter than a typical supernova. They pack a punch, but scientists aren’t completely sure why. Finding more of them will help astronomers weigh different theories.
Even rarer and more powerful, Roman could also detect several kilonovae. These blasts occur when two neutron stars — extremely dense cores leftover from stars that exploded as supernovae — collide. To date, there has been only one definitive kilonova detection. The team estimates Roman could spot five more.
NASA’s Roman Space Telescope will survey the same areas of the sky every few days following its launch in May 2027. Researchers will mine these data to identify kilonovae – explosions that happen when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.Credit: NASA, ESA, J. Olmsted (STScI) That would help astronomers learn much more about these mysterious events, potentially including their fate. As of now, scientists are unsure whether kilonovae result in a single neutron star, a black hole, or something else entirely.
Roman may even spot the detonations of some of the first stars that formed in the universe. These nuclear furnaces were giants, up to hundreds of times more massive than our Sun, and unsullied by heavy elements that hadn’t yet formed.
They were so massive that scientists think they exploded differently than modern massive stars do. Instead of reaching the point where a heavy star today would collapse, intense gamma rays inside the first stars may have turned into matter-antimatter pairs (electrons and positrons). That would drain the pressure holding the stars up until they collapsed, self-destructing in explosions so powerful they’re thought to leave nothing behind.
So far, astronomers have found about half a dozen candidates of these “pair-instability” supernovae, but none have been confirmed.
“I think Roman will make the first confirmed detection of a pair-instability supernova,” Rose said — in fact the study suggests Roman will find more than 10. “They’re incredibly far away and very rare, so you need a telescope that can survey a lot of the sky at a deep exposure level in near-infrared light, and that’s Roman.”
A future rendition of the simulation could include even more types of cosmic flashes, such as variable stars and active galaxies. Other telescopes may follow up on the rare phenomena and objects Roman discovers to view them in different wavelengths of light to study them in more detail.
“Roman’s going to find a whole bunch of weird and wonderful things out in space, including some we haven’t even thought of yet,” Hounsell said. “We’re definitely expecting the unexpected.”
For more information about the Roman Space Telescope visit www.nasa.gov/roman.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 15, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms
Nancy Grace Roman Space Telescope Astrophysics Black Holes Dark Energy Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Science & Research Stars Supernovae The Universe Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 3 months ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
Article 6 months ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels
Article 5 days ago View the full article
-
By NASA
On June 11, NASA’s LRO (Lunar Reconnaissance Orbiter) captured photos of the site where the ispace Mission 2 SMBC x HAKUTO-R Venture Moon (RESILIENCE) lunar lander experienced a hard landing on June 5, 2025, UTC.
RESILIENCE lunar lander impact site, as seen by NASA’s Lunar Reconnaissance Orbiter Camera (LROC) on June 11, 2025. The lander created a dark smudge surrounded by a subtle bright halo.Credit: NASA/Goddard/Arizona State University. RESILIENCE was launched on Jan. 15 on a privately funded spacecraft.
LRO’s right Narrow Angle Camera (one in a suite of cameras known as LROC) captured the images featured here from about 50 miles above the surface of Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges.
The dark smudge visible above the arrow in the photo formed as the vehicle impacted the surface, kicking up regolith — the rock and dust that make up Moon “soil.” The faint bright halo encircling the site resulted from low-angle regolith particles scouring the delicate surface.
This animation shows the RESILIENCE site before and after the impact. In the image, north is up. Looking from west to east, or left to right, the area pictured covers 2 miles.Credit: NASA/Goddard/Arizona State University. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
lonnie.shekhtman@nasa.gov
Share
Details
Last Updated Jun 20, 2025 EditorMadison OlsonContactMolly Wassermolly.l.wasser@nasa.govLocationGoddard Space Flight Center Related Terms
Lunar Reconnaissance Orbiter (LRO) Earth's Moon View the full article
-
By European Space Agency
After years of careful design and preparation, ESA’s Earth Explorer Biomass satellite is set for launch tomorrow, 29 April at 11:15 CEST, aboard a Vega-C rocket from Europe’s Spaceport in French Guiana.
This groundbreaking mission will offer unprecedented insights into the state and evolution of the world’s forests. By mapping the woody material in Earth’s forests, this revolutionary satellite will play a crucial role in deepening our understanding of how forests influence the global carbon cycle.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.