Jump to content

What's Going on with the Hole in the Ozone Layer? We Asked a NASA Expert


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Portrait of John Boyd, whose contributions to NASA spanned more than 70 years.Credit: NASA John Boyd, known to many as Jack and whose career spanned more than seven decades in a multitude of roles across NASA as well as its predecessor, the National Advisory Committee for Aeronautics (NACA), died Feb. 20. He was 99. Born in 1925, and raised in Danville, Virginia, he was a long-time resident of Saratoga, California.
      Boyd is being remembered by many across the agency, including Dr. Eugene Tu, director, NASA’s Ames Research Center in California’s Silicon Valley, where Boyd spent most of his career.
      “Jack brought an energy, optimism, and team-based approach to solving some of the greatest technological challenges humanity has ever faced, which remains part of our culture to this day,” said Tu. “There are few careers as wide-ranging and impactful as Jack’s.”
      In 1947, Boyd began his career at the then-called Ames Aeronautical Laboratory in Moffett Field, California, as an aeronautical engineer working to design and test various wing shapes using the center’s 1-by-3-foot supersonic wind tunnel. Boyd continued conducting research in wind tunnels, testing designs that led to dramatic increases in the efficiency of the supersonic B-58 bomber, as well as the F-102 and F-106 fighters.
      In 1958, just before Ames became part of a newly established NASA, Boyd recalled thinking, “Maybe someday we’ll go out into the far blue yonder, and if we do, what are we going to fly? How are we going to bring it back into the atmosphere safely?” He and a team of engineers turned their attention to studying the dynamics of high-speed projectiles in hypervelocity ranges, filled with different mixtures of gases to mimic the atmospheres of Mars and Venus, in preparation for sending spacecraft out into space and safely back again or to the surface of other worlds.
      By the mid-60s, Boyd was promoted into leadership and tapped to become deputy director for Aeronautics and Flight Systems at NASA Ames. In the late 1960s, as America was redefining its space exploration goals and sending humans to the Moon, Boyd served as the center’s lead to assist NASA Headquarters in Washington consolidate and create new research programs.
      In 1979, Boyd served as the deputy director at NASA’s Dryden Flight Research Center (now known as NASA’s Armstrong Flight Research Center) in Edwards, California, and prepared the center for its role as a landing site for the space shuttle. He briefly returned to Ames before heading to NASA Headquarters to be associate administrator for management under James M. Beggs. Boyd left government service in 1985, taking a position as chancellor for research and an adjunct professor of aerodynamics, engineering, and the history of spaceflight for the University of Texas System.
      Boyd returned to NASA and California’s Silicon Valley in 1993,inspiring students through educational outreach initiatives, and serving as the senior advisor to the director, senior advisor for history, and the center ombudsman until his retirement in 2020.
      Boyd credits his interest in airplanes to a cousin who was a paratrooper and gave him a ride in a biplane in the 1940s. In 1943, he enrolled and became the first in his family to earn a degree with a bachelor of science in aeronautical engineering from Virginia Polytechnic Institute and State University in Blacksburg, Virginia. He was a recipient of the NASA Exceptional Service Award, the NASA Outstanding Leadership Award, the NASA Equal Employment Opportunity Medal, the Presidential Rank of Meritorious Executive, the NASA Distinguished Service Medal, the Army Command Medal, and the NASA Headquarters History Award. He also was a Fellow of the American Institute of Aeronautics and Astronautics and a Sloan Fellow at Stanford University.
      “The agency and the nation thank and honor Jack as a member of the NASA family and the highest exemplar of a public servant who believed investing in others is the greatest contribution one can make,” added Tu. “He will be deeply missed.”
      For more information about NASA Ames, visit:
      https://www.nasa.gov/ames
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley
      650-604-4789
      rachel.hoover@nasa.gov
      Share
      Details
      Last Updated Feb 26, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Ames Research Center Aeronautics Armstrong Flight Research Center NASA Headquarters National Advisory Committee for Aeronautics (NACA) View the full article
    • By NASA
      A SpaceX Falcon 9 rocket stands vertical on Tuesday, Feb. 25, 2025, at Launch Complex 39A at NASA’s Kennedy Space Center ahead of Intuitive Machines’ IM-2 mission as part of the agency’s Commercial Lunar Payload Services initiative and Artemis campaign. SpaceX Sending instruments to the Moon supports a growing lunar economy on and off Earth, and the next flight of NASA science and technology is only days away. NASA’s CLPS (Commercial Lunar Payload Services) initiative is a lunar delivery service that sends NASA science and technology instruments to various geographic locations on the Moon using American companies. These rapid, cost-effective commercial lunar missions at a cadence of about two per year improve our understanding of the lunar environment in advance of future crewed missions to the Moon as part of the agency’s broader Artemis campaign.  
      Of the 11 active CLPS contracts, there have been three CLPS launches to date: Astrobotic’s Peregrine Mission One, which collected data in transit but experienced an anomaly that prevented it from landing on the Moon; Intuitive Machines’ IM-1 mission, which landed, tipped over, and operated on the lunar surface; and Firefly Aerospace’s Blue Ghost Mission One that is currently enroute and scheduled to land in early March 2025. The CLPS contract awards cover end-to-end commercial payload delivery services, including payload integration, launch from Earth, landing on the surface of the Moon, and mission operations. 
      NASA’s fourth CLPS flight is from Intuitive Machines with their IM-2 mission. The IM-2 mission is carrying NASA science and technology instruments to Mons Mouton, a lunar plateau just outside of 5 degrees of the South Pole of the Moon, closer to the pole than any preceding lunar mission.  
      Scheduled to launch no earlier than Wednesday and land approximately eight days later, Intuitive Machines’ Nova-C lander, named Athena, will carry three NASA instruments to the lunar South Pole region – the Polar Resources Ice Mining Experiment-1 (PRIME-1) suite and the Laser Retroreflector Array (LRA). 
      The PRIME-1 suite consists of two instruments, the TRIDENT drill (The Regolith Ice Drill for Exploring New Terrain) and MSolo (Mass Spectrometer observing lunar operations), which will work together to extricate lunar soil samples, known as regolith, from the subsurface and analyze their composition to further understand the lunar environment and gain insight on potential resources that can be extracted for future examination. 
      The meter-long TRIDENT drill is designed to extract lunar regolith, up to about three feet below the surface. It will also measure soil temperature at varying depths below the surface, which will help to verify existing lunar thermal models that are used for ice stability calculations and resource mapping. By drilling into the lunar regolith, information is gathered to help answer questions about the lunar regolith geotechnical properties, such as soil strength, both at the surface and in the subsurface that will help inform Artemis infrastructure objectives. The data will be beneficial when designing future systems for on-site resource utilization that will use local resources to create everything from landing pads to rocket fuel. The lead development organization for TRIDENT is Honeybee Robotics, a Blue Origin Company. 
      The MSOLO instrument is a mass spectrometer capable of identifying and quantifying volatiles (or gasses that easily evaporate) found at or beneath the lunar surface, including– if it’s present in the regolith within the drill’s reach – water and oxygen, brought to the surface by the TRIDENT drill. This instrument can also detect any gases that emanate from the lander, drilling process, and other payloads conducting operations on the surface. Using MSolo to study the volatile gases found on the Moon can help us understand how the lander’s presence might alter the local environment. The lead development organization is INFICON of Syracuse, New York, in partnership with NASA’s Kennedy Space Center in Florida. 
      NASA’s LRA is a collection of eight retroreflectors that enable precision laser ranging, which is a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The LRA instrument is passive, meaning it does not power on. It will function as a permanent location marker on the Moon for decades to come, similar to its predecessors. The lead development organization is NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 
      In addition to the CLPS instruments, two technology demonstrations aboard IM-2 were developed through NASA’s Tipping Point opportunity. These are collaborations with the agency’s Space Technology Mission Directorate and industry that support development of commercial space capabilities and benefit future NASA missions.  
      Intuitive Machines developed a small hopping robot, Grace, named after Grace Hopper, computer scientist and mathematician. Grace will deploy as a secondary payload from the lander and enable high-resolution imaging and science surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. 
      Nokia will test a Lunar Surface Communications System that employs the same cellular technology here on Earth. Reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission, this tipping point technology aims to demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. 
      Launching as a rideshare alongside the IM-2 mission, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit where it will map the distribution of water – and other forms of water – on the Moon. 
      Future CLPS flights will continue to send payloads to the near side, far side, and South Pole regions of the Moon where investigations and exploration are informed by each area’s unique characteristics. With a pool of 13 American companies under CLPS, including a portfolio of 11 lunar deliveries by five vendors sending more than 50 individual science and technology instruments to lunar orbit and the surface of the Moon, NASA continues to advance long-term exploration of the Moon, and beyond to Mars.   

      View the full article
    • By NASA
      Acting Director of NASA’s Johnson Space Center, Steve Koerner. Credit: NASA/Norah Moran NASA has selected Stephen Koerner as acting director of Johnson Space Center. Koerner previously served as Johnson’s deputy director.
      “It is an honor to accept my new role as acting director for Johnson,” Koerner said. “Our employees are key to our nation’s human spaceflight goals. I am continually impressed with what our workforce accomplishes and am proud to be named the leader of such an incredible team dedicated to mission excellence.”
      Koerner previously served as deputy director of NASA Johnson beginning in July 2021, overseeing strategic workforce planning, serving as Designated Agency Safety Health Officer (DASHO), and supporting the Johnson Center Director in mission reviews. Before his appointment to deputy director, Koerner served as director of the Flight Operations Directorate (FOD) for two years. In that role, he was responsible for selecting and protecting astronauts, and for the planning, training, and execution of human space flight and aviation missions. He managed an annual budget of $367 million, 600 civil servants and military personnel, and 2300 contractor personnel.  He oversaw the Astronaut Office, the Flight Director Office, the Mission Control Center, human spaceflight training facilities, and Johnson’s Aviation Operations Division. During this tenure he was also responsible for FOD’s flight readiness of the first commercial human spaceflight mission, ushering in a new era of domestic launch capability and the return of American astronauts launching from American soil. 
      Prior to assuming his position as director of Flight Operations, Koerner served in several senior executive roles, including:
      Johnson Space Center Associate Director from 2018 to 2019 Johnson Space Center Chief Financial Officer (CFO) from 2017 to 2018 Deputy Director of Flight Operations from 2014 to 2017 Deputy Director Mission Operations from 2007 to 2014 Koerner joined Johnson full-time in 1992. He has extensive operations experience including serving as an environmental systems space shuttle flight controller, where he supported 41 space shuttle flights in Mission Control. Since that time, he has served in a series of progressively more responsible positions, including lead for two International Space Station flight control groups, chief of the space station’s Data Systems Flight Control Branch, chief of the Mission Operations Directorate’s Management Integration Office, and as the Mission Operation Directorate’s manager for International Space Station operations.
      Additional special assignments throughout his career include:
      Project manager for Johnson’s Crew Exploration Vehicle Avionics Integration Lab (June 2007 –June 2008) Member of NASA’s Human Exploration Framework Team (April 2010 –October 2010) Member of NASA’s Standing Review Board that provided an independent assessment at life cycle review milestones for the Multi-Purpose Crew Vehicle Program, the Space Launch System Program and the Ground Systems Development and Operations Program (October 2011 – August 2014) Lead of NASA’s Mission Operations Capability Team (October 2015 –April 2017) “Steve has an accomplished career serving human spaceflight. His vision and dedication to the Johnson workforce makes him the perfect person to lead the Johnson team forward as acting director,” said Vanessa Wyche, NASA acting associate administrator. “Steve is an asset to the center and the agency—as both a proven technical expert and a leader.”
      Throughout his career, Koerner has been recognized for outstanding technical achievements and leadership, receiving two Superior Accomplishment Awards, the Outstanding Leadership Medal, the Johnson Space Center Director’s Commendation Award, two group achievement awards, the Exceptional Service Medal, and the Presidential Rank Award.
      Koerner is a native of Stow, Ohio. He earned a bachelor’s degree in mechanical engineering from the University of Akron in Ohio, and a master’s degree in business administration from LeTourneau University in Longview, Texas.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts NASA’s Europa Clipper as it flies by Mars, using the planet’s gravitational force to alter the spacecraft’s path on its way to the Jupiter system. NASA/JPL-Caltech The orbiter bound for Jupiter’s moon Europa will investigate whether the moon is habitable, but it first will get the help of Mars’ gravitational force to get to deep space.
      On March 1, NASA’s Europa Clipper will streak just 550 miles (884 kilometers) above the surface of Mars for what’s known as a gravity assist — a maneuver to bend the spacecraft’s trajectory and position it for a critical leg of its long voyage to the Jupiter system. The close flyby offers a bonus opportunity for mission scientists, who will test their radar instrument and thermal imager.
      Europa Clipper will be closest to the Red Planet at 12:57 p.m. EST, approaching it at about 15.2 miles per second (24.5 kilometers per second) relative to the Sun. For about 12 hours prior and 12 hours after that time, the spacecraft will use the gravitational pull of Mars to pump the brakes and reshape its orbit around the Sun. As the orbiter leaves Mars behind, it will be traveling at a speed of about 14 miles per second (22.5 kilometers per second).
      The flyby sets up Europa Clipper for its second gravity assist — a close encounter with Earth in December 2026 that will act as a slingshot and give the spacecraft a velocity boost. After that, it’s a straightforward trek to the outer solar system; the probe is set to arrive at Jupiter’s orbit in April 2030.
      “We come in very fast, and the gravity from Mars acts on the spacecraft to bend its path,” said Brett Smith, a mission systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Meanwhile, we’re exchanging a small amount of energy with the planet, so we leave on a path that will bring us back past Earth.”
      This animation depicts NASA’s Europa Clipper as it flies by the Red Planet. The spacecraft will use the planet’s gravity to bend its path slightly, setting up the next leg of its long journey to investigate Jupiter’s icy moon Europa. NASA/JPL-Caltech Harnessing Gravity
      Europa Clipper launched from Kennedy Space Center in Florida on Oct. 14, 2024, via a SpaceX Falcon Heavy, embarking on a 1.8-billion-mile (2.9-billion-kilometer) trip to Jupiter, which is five times farther from the Sun than Earth is. Without the assists from Mars in 2025 and from Earth in 2026, the 12,750-pound (6,000-kilogram) spacecraft would require additional propellant, which adds weight and cost, or it would take much longer to get to Jupiter.
      Gravity assists are baked into NASA’s mission planning, as engineers figure out early on how to make the most of the momentum in our solar system. Famously, the Voyager 1 and Voyager 2 spacecraft, which launched in 1977, took advantage of a once-in-a-lifetime planetary lineup to fly by the gas giants, harnessing their gravity and capturing data about them.
      While navigators at JPL, which manages Europa Clipper and Voyager, have been designing flight paths and using gravity assists for decades, the process of calculating a spacecraft’s trajectory in relation to planets that are constantly on the move is never simple.
      “It’s like a game of billiards around the solar system, flying by a couple of planets at just the right angle and timing to build up the energy we need to get to Jupiter and Europa,” said JPL’s Ben Bradley, Europa Clipper mission planner. “Everything has to line up — the geometry of the solar system has to be just right to pull it off.”
      About 4½ months after its launch, NASA’s Europa Clipper is set to perform a gravity as-sist maneuver as it flies by Mars on March 1. Next year the spacecraft will swing back by Earth for a final gravity assist before NASA/JPL-Caltech Refining the Path
      Navigators sent the spacecraft on an initial trajectory that left some buffer around Mars so that if anything were to go wrong in the weeks after launch, Europa Clipper wouldn’t risk impacting the planet. Then the team used the spacecraft’s engines to veer closer to Mars’ orbit in what are called trajectory correction maneuvers, or TCMs.
      Mission controllers have performed three TCMs to set the stage for the Mars gravity assist — in early November, late January, and on Feb. 14. They will conduct another TCM about 15 days after the Mars flyby to ensure the spacecraft is on track and are likely to conduct additional ones — upwards of 200 — throughout the mission, which is set to last until 2034.
      Opportunity for Science
      While navigators are relying on the gravity assist for fuel efficiency and to keep the spacecraft on their planned path, scientists are looking forward to the event to take advantage of the close proximity to the Red Planet and test two of the mission’s science instruments.
      About a day prior to the closest approach, the mission will calibrate the thermal imager, resulting in a multicolored image of Mars in the months following as the data is returned and scientists process the data. And near closest approach, they’ll have the radar instrument perform a test of its operations — the first time all its components will be tested together. The radar antennas are so massive, and the wavelengths they produce so long that it wasn’t possible for engineers to test them on Earth before launch.   
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper/
      Check out Europa Clipper's Mars flyby in 3D News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 
      2025-024
      Share
      Details
      Last Updated Feb 25, 2025 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Explore More
      2 min read Is There Potential for Life on Europa? We Asked a NASA Expert: Episode 52
      Article 2 hours ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago 5 min read NASA’s SPHEREx Space Telescope Will Seek Life’s Ingredients
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      That’s a great question. And it’s a question that NASA will seek to answer with the Europa Clipper spacecraft.

      Europa is a moon of Jupiter. It’s about the same size as Earth’s Moon, but its surface looks very different. The surface of Europa is covered with a layer of ice, and below that ice, we think there’s a layer of liquid water with more water than all of Earth’s oceans combined.

      So because of this giant ocean, we think that Europa is actually one of the best places in the solar system to look for life beyond the Earth.

      Life as we know it has three main requirements: liquid water — all life here on Earth uses liquid water as a basis.

      The second is the right chemical elements. These are elements like carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur. They’re elements that create the building blocks for life as we know it on Earth. We think that those elements exist on Europa.

      The third component is an energy source. As Europa orbits around Jupiter, Jupiter’s strong gravity tugs and pulls on it. It actually stretches out the surface. And it produces a heat source called tidal heating. So it’s possible that hydrothermal systems could exist at the bottom of Europa’s ocean, and it’s possible that those could be locations for abundant life.

      So could there be life on Europa? It’s possible. And Europa Clipper is going to explore Europa to help try to answer that question.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 25, 2025 Related Terms
      Science Mission Directorate Astrobiology Europa Europa Clipper Planetary Science Planetary Science Division The Solar System Explore More
      2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 hours ago 4 min read NASA: New Study on Why Mars is Red Supports Potentially Habitable Past
      Article 5 hours ago 4 min read Five Facts About NASA’s Moon Bound Technology
      Article 16 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...