Jump to content

The sound of Aeolus will blow you away


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4282-4283: Bumping Away from Kings Canyon
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on August 21, 2024, Sol 4280 of the Mars Science Laboratory Mission, at 00:18:12 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday, Aug. 21, 2024
      Having stayed in place for quite a few sols during our Kings Canyon drill campaign, we’re looking forward to doing a bump (ie: a short drive) and accomplishing some science in a new region. I’m on the SA-SPaH (ie: robotic arm) downlink team, which assess and reports on the success of robotic arm and drilling activities, including being closely involved in drilling campaigns. For awhile there was talk of doing a second Kings Canyon drill, but ultimately our planners decided against it. Though I always love getting involved with drill campaigns, we’re excited about our bump, which will take us near the “Fourth Recess Lake” area.
      On sol 4282, we have some arm activities scheduled before a ~10 meter drive. During our first arm backbone, the rover will perform contact science on our “Marck Lake” target, including a DRT brushing and APXS integration. “Marck Lake” is a target just to the left of our existing Kings Canyon drill hole and supports our science studies for continuing to investigate this area’s lithology. We’ll also be doing some LIBS measurements on our drill tailings. This is to get extra data for supporting CheMin and SAM measurements. 
      After our arm activities, we’re taking advantage of a dust storm watch to do some extra environmental science. This watch comes because of a regional dust storm – visible even from the Earth – that has potential to evolve into a global dust storm. While it’s unusual to see global storms at this time of years, large planet encircling dust storms occur on Mars every three Mars years (about five and a half Earth years) on average. Even if they don’t turn into planet encircling events, regional dust storms on Mars can still grow quite large. The last regional dust storm on Mars occurred in early January of 2022 and had a surface area nearly twice the size of the United States. See this report from NASA for more information.
      Towards the end of 4282, we will execute a ~10 meter drive towards the “Fourth Recess Lake” region. This area has numerous bright-toned clasts we’re excited to investigate for evidence of excess sulfur. For sol 4283, we have planned a ChemCam AEGIS activity, allowing autonomous target selection for upcoming geochemical spectrometry. If you’re interested in learning more about ChemCam AEGIS, check out this article.
      Written by Remington Free, Operations Systems Engineer at NASA Jet Propulsion Laboratory
      Share








      Details
      Last Updated Aug 26, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4284–4286: Environmental Science Extravaganza


      Article


      17 mins ago
      2 min read Sols 4280-4281: Last Call at Kings Canyon


      Article


      6 days ago
      4 min read Sols 4277-4279: Getting Ready To Say Goodbye to the King!


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      An international team of astronomers using the NASA/ESA/CSA James Webb Space Telescope have directly imaged an exoplanet roughly 12 light-years from Earth. While there were hints that the planet existed, it had not been confirmed until Webb imaged it. The planet is one of the coldest exoplanets observed to date.
      View the full article
    • By NASA
      6 Min Read NASA’s Webb Images Cold Exoplanet 12 Light-Years Away
      This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line (full image below) An international team of astronomers using NASA’s James Webb Space Telescope has directly imaged an exoplanet roughly 12 light-years from Earth. The planet, Epsilon Indi Ab, is one of the coldest exoplanets observed to date.
      The planet is several times the mass of Jupiter and orbits the K-type star Epsilon Indi A (Eps Ind A), which is around the age of our Sun, but slightly cooler. The team observed Epsilon Indi Ab using the coronagraph on Webb’s MIRI (Mid-Infrared Instrument). Only a few tens of exoplanets have been directly imaged previously by space- and ground-based observatories.
      Image A: Exoplanet Epsilon Indi Ab
      This image of the gas-giant exoplanet Epsilon Indi Ab was taken with the coronagraph on NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). A star symbol marks the location of the host star Epsilon Indi A, whose light has been blocked by the coronagraph, resulting in the dark circle marked with a dashed white line. Epsilon Indi Ab is one of the coldest exoplanets ever directly imaged. Light at 10.6 microns was assigned the color blue, while light at 15.5 microns was assigned the color orange. MIRI did not resolve the planet, which is a point source. “Our prior observations of this system have been more indirect measurements of the star, which actually allowed us to see ahead of time that there was likely a giant planet in this system tugging on the star,” said team member Caroline Morley of the University of Texas at Austin. “That’s why our team chose this system to observe first with Webb.”
      “This discovery is exciting because the planet is quite similar to Jupiter — it is a little warmer and is more massive, but is more similar to Jupiter than any other planet that has been imaged so far,” added lead author Elisabeth Matthews of the Max Planck Institute for Astronomy in Germany.
      Previously imaged exoplanets tend to be the youngest, hottest exoplanets that are still radiating much of the energy from when they first formed. As planets cool and contract over their lifetime, they become significantly fainter and therefore harder to image.
      A Solar System Analog
      “Cold planets are very faint, and most of their emission is in the mid-infrared,” explained Matthews. “Webb is ideally suited to conduct mid-infrared imaging, which is extremely hard to do from the ground. We also needed good spatial resolution to separate the planet and the star in our images, and the large Webb mirror is extremely helpful in this aspect.”
      Epsilon Indi Ab is one of the coldest exoplanets to be directly detected, with an estimated temperature of 35 degrees Fahrenheit (2 degrees Celsius) — colder than any other imaged planet beyond our solar system, and colder than all but one free-floating brown dwarf. The planet is only around 180 degrees Fahrenheit (100 degrees Celsius) warmer than gas giants in our solar system. This provides a rare opportunity for astronomers to study the atmospheric composition of true solar system analogs.
      “Astronomers have been imagining planets in this system for decades; fictional planets orbiting Epsilon Indi have been the sites of Star Trek episodes, novels, and video games like Halo,” added Morley. “It’s exciting to actually see a planet there ourselves, and begin to measure its properties.”
      Not Quite As Predicted
      Epsilon Indi Ab is the twelfth closest exoplanet to Earth known to date and the closest planet more massive than Jupiter. The science team chose to study Eps Ind A because the system showed hints of a possible planetary body using a technique called radial velocity, which measures the back-and-forth wobbles of the host star along our line of sight.
      “While we expected to image a planet in this system, because there were radial velocity indications of its presence, the planet we found isn’t what we had predicted,” shared Matthews. “It’s about twice as massive, a little farther from its star, and has a different orbit than we expected. The cause of this discrepancy remains an open question. The atmosphere of the planet also appears to be a little different than the model predictions. So far we only have a few photometric measurements of the atmosphere, meaning that it is hard to draw conclusions, but the planet is fainter than expected at shorter wavelengths.”
      The team believes this may mean there is significant methane, carbon monoxide, and carbon dioxide in the planet’s atmosphere that are absorbing the shorter wavelengths of light. It might also suggest a very cloudy atmosphere.
      The direct imaging of exoplanets is particularly valuable for characterization. Scientists can directly collect light from the observed planet and compare its brightness at different wavelengths. So far, the science team has only detected Epsilon Indi Ab at a few wavelengths, but they hope to revisit the planet with Webb to conduct both photometric and spectroscopic observations in the future. They also hope to detect other similar planets with Webb to find possible trends about their atmospheres and how these objects form.
      NASA’s upcoming Nancy Grace Roman Space Telescope will use a coronagraph to demonstrate direct imaging technology by photographing Jupiter-like worlds orbiting Sun-like stars – something that has never been done before. These results will pave the way for future missions to study worlds that are even more Earth-like.
      These results were taken with Webb’s Cycle 1 General Observer program 2243 and have been published in the journal Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results published in the journal Nature.

      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu , Hannah Braun hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.

      Related Information
      Animation: Eclipse/Coronagraph Animation
      Webb Blog: NASA’s Webb Takes Its First-Ever Direct Image of Distant World
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Article: Webb’s Impact on Exoplanet Research
      NASA’s Exoplanet Website
      More Webb News
      More Webb Images
      Webb Mission Page

      Related For Kids
      What is a exoplanet?
      What is the Webb Telescope?
      SpacePlace for Kids

      En Español
      Para Niños : Qué es una exoplaneta?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Exoplanets
      Exoplanet Stories
      Universe
      Share
      Details
      Last Updated Jul 23, 2024 EditorStephen SabiaContactLaura Betzlaura.e.betz@nasa.gov Related Terms
      Astrophysics Exoplanet Science Exoplanets Gas Giant Exoplanets Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Studying Exoplanets The Universe View the full article
    • By European Space Agency
      Video: 00:01:35 Aeolus’s mission is over, but weather forecasting is improved forever, and a new precedent has been set for safe satellite reentries. The trailblazing Earth Explorer returned through our atmosphere on 28 July, following the path it was guided on by ESA’s mission control over Earth’s most uninhabited regions, finally disintegrating over the Antarctic. 
      A week-long series of manoeuvres led to this point. They had never been performed before and pushed the satellite to its limits. Aeolus was never designed to fly at such low altitudes – its thrusters and fuel reserves were not made to operate in the thick lower reaches of Earth’s atmosphere. 
      Despite choppy skies and one evening where it seemed the attempt could fail, the successful reentry lowered the already small risk of surviving fragments landing where they shouldn’t. 
      The chance of satellite debris falling on your head is three times less than a meteorite doing the same. Despite this, as our orbital highways get busier and reentries become more common, ESA went above and beyond to lower this even further. 
      By turning Aeolus’s original fate – an uncontrolled, ‘natural’ reentry – into an assisted one, they reduced that risk another 42 times. 
      This animation shows how the final moments for Aeolus could have gone, set to a sonification of Aeolus data, composed by Jamie Perera. 
      Find out more about Aeolus’s final moments in the Rocket Science blog.  
      View the full article
    • By European Space Agency
      Aeolus reentry - LIVE
      Get rolling updates on the Aeolus reentry, on the Rocket Science blog
      View the full article
  • Check out these Videos

×
×
  • Create New...