Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A SpaceX Falcon 9 rocket lifts off from Vandenberg Space Force Base, carrying NASA’s EZIE spacecraft into orbit. SpaceX Under the nighttime California sky, NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission launched aboard a SpaceX Falcon 9 rocket at 11:43 p.m. PDT on March 14.
      Taking off from Vandenberg Space Force Base near Santa Barbara, the EZIE mission’s trio of small satellites will fly in a pearls-on-a-string configuration approximately 260 to 370 miles above Earth’s surface to map the auroral electrojets, powerful electric currents that flow through our upper atmosphere in the polar regions where auroras glow in the sky.
      At approximately 2 a.m. PDT on March 15, the EZIE satellites were successfully deployed. Within the next 10 days, the spacecraft will send signals to verify they are in good health and ready to embark on their 18-month mission.
      “NASA has leaned into small missions that can provide compelling science while accepting more risk. EZIE represents excellent science being executed by an excellent team, and it is delivering exactly what NASA is looking for,” said Jared Leisner, program executive for EZIE at NASA Headquarters in Washington.
      The electrojets — and their visible counterparts, theauroras — are generated duringsolar storms when tremendous amounts of energy get transferred into Earth’s upper atmosphere from the solar wind. Each of the EZIE spacecraft will map the electrojets, advancing our understanding of the physics of how Earth interacts with its surrounding space. This understanding will apply not only to our own planet but also to any magnetized planet in our solar system and beyond. The mission will also help scientists create models for predicting space weather to mitigate its disruptive impacts on our society.
      “It is truly incredible to see our spacecraft flying and making critical measurements, marking the start of an exciting new chapter for the EZIE mission,” said Nelli Mosavi-Hoyer, project manager for EZIE at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “I am very proud of the dedication and hard work of our team. This achievement is a testament to the team’s perseverance and expertise, and I look forward to the valuable insights EZIE will bring to our understanding of Earth’s electrojets and space weather.”
      Instead of using propulsion to control their polar orbit, the spacecraft will actively use drag experienced while flying through the upper atmosphere to individually tune their spacing. Each successive spacecraft will fly over the same region 2 to 10 minutes after the former.
      “Missions have studied these currents before, but typically either at the very large or very small scales,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE will help us understand how these currents form and evolve, at scales we’ve never probed.”
      The mission team is also working to distribute magnetometer kits called EZIE-Mag, which are available to teachers, students, and science enthusiasts who want to take their own measurements of the Earth-space electrical current system. EZIE-Mag data will be combined with EZIE measurements made from space to assemble a clear picture of this vast electrical current circuit.
      The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. The Johns Hopkins Applied Physics Laboratory leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats, and NASA’s Jet Propulsion Laboratory in Southern California built the Microwave Electrojet Magnetogram, which will map the electrojets, for each of the three satellites.
      For the latest mission updates, follow NASA’s EZIE blog.
      By Brett Molina
      Johns Hopkins Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 15, 2025 Editor Vanessa Thomas Contact Sarah Frazier sarah.frazier@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Auroras CubeSats EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Heliophysics Division Missions Small Satellite Missions The Sun Explore More
      5 min read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora


      Article


      3 weeks ago
      5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras


      Article


      2 months ago
      5 min read How NASA Tracked the Most Intense Solar Storm in Decades


      Article


      10 months ago
      View the full article
    • By NASA
      NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
      One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
      Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
      In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
      The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
      Keep Exploring Discover More Topics From NASA
      International Space Station News
      Space Station Research and Technology Tools and Information
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      Space Station Research Results
      View the full article
    • By NASA
      4 min read
      NASA Atmospheric Wave-Studying Mission Releases Data from First 3,000 Orbits
      Following the 3,000th orbit of NASA’s AWE (Atmospheric Waves Experiment) aboard the International Space Station, researchers publicly released the mission’s first trove of scientific data, crucial to investigate how and why subtle changes in Earth’s atmosphere cause disturbances, as well as how these atmospheric disturbances impact technological systems on the ground and in space.
      “We’ve released the first 3,000 orbits of data collected by the AWE instrument in space and transmitted back to Earth,” said Ludger Scherliess, principal investigator for the mission and physics professor at Utah State University. “This is a view of atmospheric gravity waves never captured before.”
      Available online, the data release contains more than five million individual images of nighttime airglow and atmospheric gravity wave observations collected by the instrument’s four cameras, as well as derived temperature and airglow intensity swaths of the ambient air and the waves.
      This image shows AWE data combined from two of the instrument’s passes over the United States. The red and orange wave-structures show increases in brightness (or radiance) in infrared light produced by airglow in Earth’s atmosphere. NASA/AWE/Ludger Scherliess “AWE is providing incredible images and data to further understand what we only first observed less than a decade ago,” said Esayas Shume, AWE program scientist at NASA Headquarters in Washington. “We are thrilled to share this influential data set with the larger scientific community and look forward to what will be discovered.”
      Members of the AWE science team gather in the mission control room at Utah State University to view data collected by the mapping instrument mounted on the outside of the International Space Station. SDL/Allison Bills Atmospheric gravity waves occur naturally in Earth’s atmosphere and are formed by Earth’s weather and topography. Scientists have studied the enigmatic phenomena for years, but mainly from a few select sites on Earth’s surface.
      “With data from AWE, we can now begin near-global measurements and studies of the waves and their energy and momentum on scales from tens to hundreds and even thousands of kilometers,” Scherliess said. “This opens a whole new chapter in this field of research.”  
      Data from AWE will also provide insight into how terrestrial and space weather interactions affect satellite communications, and navigation, and tracking.
      “We’ve become very dependent on satellites for applications we use every day, including GPS navigation,” Scherliess said. “AWE is an attempt to bring science about atmospheric gravity waves into focus, and to use that information to better predict space weather that can disrupt satellite communications. We will work closely with our collaborators to better understand how these observed gravity waves impact space weather.”
      AWE’s principal investigator, Ludger Scherliess, briefs collaborators of initial analysis of early AWE data. Information from the NASA-funded mission is helping scientists better understand how weather on Earth affects weather in space. SDL/Allison Bills The tuba-shaped AWE instrument, known as the Advanced Mesospheric Temperature Mapper or AMTM, consists of four identical telescopes. It is mounted to the exterior of the International Space Station, where it has a view of Earth.
      As the space station orbits Earth, the AMTM’s telescopes capture 7,000-mile-long swaths of the planet’s surface, recording images of atmospheric gravity waves as they move from the lower atmosphere into space. The AMTM measures and records the brightness of light at specific wavelengths, which can be used to create air and wave temperature maps. These maps can reveal the energy of these waves and how they are moving through the atmosphere.
      To analyze the data and make it publicly available, AWE researchers and students at USU developed new software to tackle challenges that had never been encountered before.
      “Reflections from clouds and the ground can obscure some of the images, and we want to make sure the data provide clear, precise images of the power transported by the waves,” Scherliess said. “We also need to make sure the images coming from the four separate AWE telescopes on the mapper are aligned correctly. Further, we need to ensure stray light reflections coming off the solar panels of the space station, along with moonlight and city lights, are not masking the observations.”
      As the scientists move forward with the mission, they’ll investigate how gravity wave activity changes with seasons around the globe. Scherliess looks forward to seeing how the global science community will use the AWE observations.
      “Data collected through this mission provides unprecedented insight into the role of weather on the ground on space weather,” he said.
      AWE is led by Utah State University in Logan, Utah, and it is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Utah State University’s Space Dynamics Laboratory built the AWE instrument and provides the mission operations center.
      By Mary-Ann Muffoletto
      Utah State University, Logan, UT
      NASA Media Contact: Sarah Frazier
      Share








      Details
      Last Updated Mar 14, 2025 Related Terms
      Heliophysics Heliophysics Division Ionosphere Mesosphere Science Mission Directorate The Sun Uncategorized Explore More
      2 min read Hubble Sees a Spiral and a Star


      Article


      7 hours ago
      5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10


      Article


      2 days ago
      4 min read Discovery Alert: ‘Super-Earth’ Swings from Super-Heated to Super-Chill


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA/Sara Lowthian-Hanna The phases of the lunar eclipse are visible in this time-lapse image of the Moon above the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, OH on March 14, 2025.
      Toward the middle of the Moon’s track through the sky, it appears red – this is the Blood Moon. One meaning of a “Blood Moon” is based on its red glow. This blood moon occurs during a total lunar eclipse. During a total lunar eclipse, Earth lines up between the Moon and the Sun, hiding the Moon from sunlight. When this happens, the only light that reaches the Moon’s surface is from the edges of the Earth’s atmosphere. The air molecules from Earth’s atmosphere scatter out most of the blue light. The remaining light reflects onto the Moon’s surface with a red glow, making the Moon appear red in the night sky.
      Image credit: NASA/Sara Lowthian-Hanna
      View the full article
    • By NASA
      4 Min Read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
      This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate. Credits: NASA/Olivia Tyrrell  A team at NASA’s Langley Research Center in Hampton, Virginia, has captured first-of-its-kind imagery of a lunar lander’s engine plumes interacting with the Moon’s surface, a key piece of data as trips to the Moon increase in the coming years under the agency’s Artemis campaign.
      The Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 instrument took the images during the descent and successful soft landing of Firefly Aerospace’s Blue Ghost lunar lander on the Moon’s Mare Crisium region on March 2, as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate.NASA/Olivia Tyrrell The compressed, resolution-limited video features a preliminary sequence that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second during the descent and landing.
      The sequence, using approximate altitude data, begins roughly 91 feet (28 meters) above the surface. The descent images show evidence that the onset of the interaction between Blue Ghost’s reaction control thruster plumes and the surface begins at roughly 49 feet (15 meters). As the descent continues, the interaction becomes increasingly complex, with the plumes vigorously kicking up the lunar dust, soil and rocks — collectively known as regolith. After touchdown, the thrusters shut off and the dust settles. The lander levels a bit and the lunar terrain beneath and immediately around it becomes visible.
      Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for…
      Rob Maddock
      SCALPSS project manager
      “Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, SCALPSS project manager. “The data is vital to reducing risk in the design and operation of future lunar landers as well as surface infrastructure that may be in the vicinity. We have an absolutely amazing team of scientists and engineers, and I couldn’t be prouder of each and every one of them.”
      As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to accurately predict the effects of landings. Data from SCALPSS will better inform future robotic and crewed Moon landings.
      The SCALPSS 1.1 technology includes six cameras in all, four short focal length and two long focal length. The long-focal-length cameras allowed the instrument to begin taking images at a higher altitude, prior to the onset of the plume-surface interaction, to provide a more accurate before-and-after comparison of the surface. Using a technique called stereo photogrammetry, the team will later combine the overlapping images – one set from the long-focal-length cameras, another from the short focal length – to create 3D digital elevation maps of the surface.
      This animation shows the arrangement of the six SCALPSS 1.1 cameras and the instrument’s data storage unit. The cameras are integrated around the base of the Blue Ghost lander. Credit: NASA/Advanced Concepts Lab The instrument is still operating on the Moon and as the light and shadows move during the long lunar day, it will see more surface details under and immediately around the lander. The team also hopes to capture images during the transition to lunar night to observe how the dust responds to the change.  
      “The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions,” said Michelle Munk, SCALPSS principal investigator.
      The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions
      Michelle Munk
      SCALPSS principal investigator
      It will take the team several months to fully process the data from the Blue Ghost landing. They plan to issue raw images from SCALPSS 1.1 publicly through NASA’s Planetary Data System within six months.
      The team is already preparing for its next flight on Blue Origin’s Blue Moon lander, scheduled to launch later this year. The next version of SCALPSS is undergoing thermal vacuum testing at NASA Langley ahead of a late-March delivery to Blue Origin.
      The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program.
      NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.

      About the Author
      Joe Atkinson
      Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Mar 13, 2025 Related Terms
      General Explore More
      4 min read Five Facts About NASA’s Moon Bound Technology
      Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 2 months ago 3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...