Jump to content

Guiding Aeolus' safe reentry


Recommended Posts

ESA's wind mission

After exceeding its planned life in orbit, ESA’s Aeolus wind satellite is on its way back to Earth. The satellite is currently falling around 1 km a day, and its descent is accelerating. ESA’s spacecraft operators will soon intervene and attempt to guide Aeolus in a first-of-its-kind assisted reentry. Why is ESA doing this?

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      On 8 September 2024, the first of four Cluster satellites will return home and burn up in the Earth’s atmosphere in an uncontrolled ‘targeted reentry’ over a remote area of the South Pacific Ocean. 
      In the nearly 70 years of spaceflight about 10 000 intact satellites and rocket bodies have reentered the atmosphere. Yet we still lack a clear view on what actually happens during a reentry. 
      An airborne observation experiment will now attempt to witness the ‘Salsa’ (Cluster 2) reentry. Scientists onboard a small plane will try to collect rare data on how and when a satellite breaks up, which can be used to make satellite reentries safer and more sustainable in the future.
      View the full article
    • By European Space Agency
      On 8 September 2024, the first of four satellites that make up ESA’s Cluster mission will reenter Earth’s atmosphere over the South Pacific Ocean Uninhabited Area.
      This marks the end of the historic mission, over 24 years after it was sent into space to measure Earth’s magnetic environment. Though the remaining three satellites will also stop making scientific observations, discoveries using existing mission data are expected for years to come.
      This ‘targeted reentry’ is the first of its kind. ESA’s efforts to ensure a clean end to the Cluster mission go beyond international standards, making the agency a world-leader in sustainable space exploration.
      View the full article
    • By NASA
      Teams with NASA’s Exploration Ground Systems Program, in preparation for the agency’s Artemis II crewed mission to the Moon, begin installing the first of four emergency egress baskets on the mobile launcher at Launch Complex 39B at the agency’s Kennedy Space Center in Florida on Wednesday, Jan. 24, 2024. The baskets, similar to gondolas on ski lifts, are used in the case of a pad abort emergency to enable astronauts and other pad personnel a way to quickly escape away from the mobile launcher to the base of the pad and where waiting emergency transport vehicles will then drive them away.NASA/Isaac Watson Recently, teams with NASA’s Exploration Ground Systems (EGS) Program at the agency’s Kennedy Space Center met with engineering teams at a central Florida amusement park to share knowledge on a new braking system NASA is using for its launch pad emergency egress system for Artemis missions.
      “We have a new magnetic braking system for the Artemis emergency egress system and NASA hasn’t used this technology on the ground infrastructure side before to support launches,” said Jesse Berdis, mobile launcher 1 deputy project manager for EGS. “I realized we have neighbors 50 miles from us in Orlando that are essentially the world experts on magnetic braking systems.”
      For Artemis, teams will use a track cable that connects the mobile launcher to the terminus site near the perimeter of NASA Kennedy’s Launch Pad 39B, where four baskets, similar to gondola lifts, can ride down. This is where the magnetic braking system operates to help control the acceleration of the baskets in multiple weight and environmental conditions. At the pad terminus site, armored emergency response vehicles are stationed to take personnel safely away from the launch pad to a designated safe site  at Kennedy.
      Many roller coaster manufacturers employ the use of an “eddy current braking system,” which involves using magnetics to help slow down a vehicle. Though the applications used on the roller coasters differ slightly from what the EGS teams are using for Artemis, the concept is the same, explained Amanda Arrieta, mobile launcher 1 senior element engineer.
      However, unlike roller coasters which are typically in use daily for multiple hours on end, the Artemis emergency egress system is there for emergency situations only.
      “We don’t plan to ever run our system unless we’re testing it or performing maintenance,” Berdis said.
      Regardless of this, teams at Kennedy have ensured the system is able to function for years to come to support future Artemis missions.
      “The maintenance crews [at the amusement park] were awesome because they showed us their nightly, monthly, and yearly inspections on what they were doing,” Berdis said. “That gave our operations teams a really good foundation and baseline knowledge of what to expect when they maintain and operate this system for the Artemis missions.”
      Some of the conversations and suggestions teams shared include adding an acceleration sensor in the emergency egress baskets during testing. The sensor will help detect how fast the baskets are going when they ride down.
      The emergency egress system is one of several new additions the EGS team is implementing  to prepare for future crewed missions starting with Artemis II, and this system especially emphasizes the importance of safety.
      “We have a mission, and a part of that mission is in case of an emergency, which we don’t expect, is to protect our astronauts and supporting teams at the launch pad,” Berdis said. “We want our teams to be safe and, for any scenario we put them in, especially on the ground infrastructure side, it’s important for us to do our due diligence. That includes talking to other groups that are the experts in their field to ensure we have looked at all possibilities across the board to ensure our mission is a safe one for our teams.”
      During the Space Shuttle Program, teams used a similar system for the escape route astronauts and other personnel take in the event of an emergency during a launch countdown. However, instead of using a magnetic braking system for the baskets, teams used a mechanical braking system, which involved using a catch net and drag chain to slow and then halt the baskets sliding down the wire.
      For the agency’s Commercial Crew Program, SpaceX also uses a catch net and drag chain for its slidewire cable at NASA Kennedy’s Launch Complex 39A pad and a deployable chute at Space Launch Complex 40 at Cape Canaveral Space Force Station. Boeing and United Launch Alliance also use a slidewire, but instead of baskets, the team deploys seats, like riding down a zip line, that ride down the slide wires at Space Launch Complex 41 at Cape Canaveral Space Force Station.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      View the full article
    • By Space Force
      A joint team of AFGSC Airmen supported by Space Force Guardians launched an unarmed Minuteman III ICBM equipped with one re-entry vehicle June 4, from Vandenberg SFB, California.

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Marshall Space Flight Center’s payload technician Chris Honea, left, and quality assurance specialist Keith Brandon, right, on Feb. 29 carefully inspect the temperature sensors that help gather data and monitor progress during a crystals experiment. The zinc selenide-based crystals were grown on the International Space Station as part of an experiment to see how gravity affects their structure or growth, then de-integrated and inspected in Marshall’s Space Systems Integration & Test Facility (SSITF). By Jessica Barnett 
      During the International Space Station’s more than 25 years of operation, there have been more than 3,000 experiments conducted aboard the microgravity laboratory, and making sure scientific samples are kept safe through launch, spaceflight, experimentation, and the return trip to Earth takes a great deal of planning, testing, and preparation across NASA.
      In February, team members at NASA’s Marshall Space Flight Center in Huntsville, Alabama, handled the de-integration of zinc selenide-based crystals grown on the space station as part of an experiment to study how a lack of gravity might affect the crystals’ growth and structure. The experiment was conducted using six sample cartridge assemblies heated up to 1,200 degrees Celsius (2,192 degrees Fahrenheit) inside the Materials Science Laboratory of the Materials Science Research Rack on the space station.
      John Luke Bili, lead systems test engineer for the sample cartridge assemblies within Marshall’s Instrument Development, Integration, and Test Branch, begins the process by working with engineers, scientists, project personnel, and the experiment’s principal investigator to create an ampoule, or sealed glass vial, to use as a sample container.
      “We’ll take the ampoule and do some ground testing, like a normal flight integration,” Bili said. “We’ll assemble it with the hardware we have, then we are responsible for completing different mitigation efforts to prepare for sealing the ampoule up and processing it at the required high temperatures.”
      The team exposes the test article to extreme heat and pressure using a duplicate of the furnace on the space station, allowing them to also test the experiment’s software.
      We have people in our branch that will write the code to run it on the space station automatically. We develop that code, then we work with Marshall’s Quality Department to test it.
      John Luke Bili
      Lead Systems Test Engineer
      The zinc selenide-based crystal experiment required six sample cartridge assemblies. After a month of preparation from Marshall’s team, the assemblies traveled to NASA’s Johnson Space Center in Houston for a final round of packing before arriving at the agency’s Kennedy Space Center in Florida for launch.
      The assemblies launched on NASA’s SpaceX 24th commercial resupply services mission in December 2021 and NASA’s Northrop Grumman 19th commercial resupply services mission in August 2023. Each sample took about a week to process through the space station’s lab furnace. The samples were then brought back to Earth, with three of the six arriving at Marshall on Feb. 9, 2024.
      While unpacking the crystal samples, team members took photos and notes of the tubes throughout the de-integration process in Marshall’s Space Systems Integration & Test Facility. The team includes technicians with 20 to 30 years of experience, ensuring samples safely travel to and from the station and helping expand access for researchers to explore microgravity, space exposure, and future missions in low Earth orbit.
      An ampoule containing zinc selenide-based crystals rests on a table Feb. 29 in Marshall Space Flight Center’s Space Systems Integration & Test Facility. The ampoule was part of the sixth sample cartridge assembly retrieved from the International Space Station as part of an experiment to see how gravity affects the crystals’ structure or growth. “It’s really nice having that kind of experience when we’re working on the hardware that’s going in space,” he said. “We’ve got a lot of people that are very skilled machinists that are able to help us in a moment’s notice, we have people with a really good understanding of technical tolerances and stuff like that, and we have people with a lot of varying experience doing flight hardware integration and tests.”
      For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit.
      Learn more about the space station at:
      https://nasa.gov/international-space-station/
      Joel Wallace
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      joel.w.wallace@nasa.gov
      Share
      Details
      Last Updated May 24, 2024 LocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      5 min read Marshall Teams Combine to Make Space Station Science Reality
      Article 8 months ago Keep Exploring Discover More Topics From NASA
      Marshall Space Flight Center
      International Space Station
      Station Science 101: Physical Science
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...