Jump to content

Ariane 5 bows out in style: dual payloads, perfect delivery


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
      NASA’s Mars rover Curiosity acquired this image of its workspace, which includes several targets for investigation — “Buttress Tree,” “Forester Pass,” “Crater Mountain,” “Mahogany Creek,” and “Filly Lake.” Curiosity used its Left Navigation Camera on Nov. 8, 2024 — sol 4357, or Martian day 4.357, of the Mars Science Laboratory mission — at 00:06:17 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 8, 2024
      After the excitement of Wednesday’s plan, it was a relief to come in today to hear that the drive toward our exit from Gediz Vallis completed successfully and that we weren’t perched on any rocks or in any other precarious position. This made for a very smooth planning morning, which is always nice on a Friday after a long week. 
      But that isn’t to say that Curiosity will be taking it easy for the weekend. Smooth planning means we have lots of time to pack in as much science as we can fit. Today, this meant that the geology group (GEO) got to name eight new targets, and the environmental group (ENV) got to spend some extra time contemplating the atmosphere. Reading through the list of target names from GEO felt a bit like reading a travel guide — top rocks to visit when you’re exiting Gediz Vallis! 
      If you look to the front of your rover, what we refer to as the “workspace” (and which you can see part of in the image above), you’ll see an array of rocks. Take in the polygonal fractures of “Colosseum Mountain” and be amazed by the structures of “Tyndall Creek” and “Cascade Valley.” Get up close and personal with our contact science targets, “Mahogany Creek,” “Forester Pass,” and “Buttress Tree.” Our workspace has something for everyone, including the laser spectrometers in the family, who will find plenty to explore with “Filly Lake” and “Crater Mountain.” We have old favorites too, like the upper Gediz Vallis Ridge and the Texoli outcrop. 
      After a busy day sightseeing, why not kick back with ENV and take a deep breath? APXS and ChemCam have you covered, watching the changing atmospheric composition. Look up with Navcam and you may see clouds drifting by, or spend some time looking for dust devils in the distance. Want to check the weather before planning your road trip? Our weather station REMS works around the clock, and Mastcam and Navcam are both keeping an eye on how dusty the crater is. 
      All good vacations must come to an end, but know that when it’s time to drive away there will be many more thrilling sights to come!
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Nov 11, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4357–4358: Turning West


      Article


      3 days ago
      2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program
      The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…


      Article


      5 days ago
      3 min read Sols 4355-4356: Weekend Success Brings Monday Best


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      U.S. Space Command and the Department of Commerce are migrating the provision of public services relating to spaceflight safety, currently provided via space-track.org, from USSPACECOM to OSC’s new Traffic Coordination System for Space.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Research into phase-change material (PCM) options for NASA helped one of the researchers find the ideal material to use in a mug that maintains the ideal temperature of a hot beverage for hours. ThermAvant International now offers mugs and tumblers.Credit: ThermAvant International LLC Dr. Hongbin Ma was tired of drinking coffee that had gone cold. Fortunately, Ma, the CEO of ThermAvant Technologies LLC in Columbia, Missouri, was working on a NASA-funded study of phase-change materials, which are used to hold a steady temperature. Materials absorb or release more heat as they transition from solid to liquid or vice versa than they do before or after this phase change.

      NASA has long used phase-changing materials to manage temperature extremes in space. The Apollo lunar rover, International Space Station, Orion capsule, and headlights on the newest spacesuit design all utilize phase-change material. As part of his NASA-funded research, Ma tested and recommended a phase-change material that could be used in a spacesuit-cooling system, a modified version of those used in spacecraft.  

      A phase-change material needs to transition at the desired temperature, but it also needs to be safe. Paraffin wax and refrigerants are effective but are toxic to humans, which would make a leak hazardous. Ma’s team ultimately recommended a bio-based option for spacesuits.  

      Bio-based waxes also proved to be the perfect solution for maintaining optimal temperature for coffee. In this case, it was a beeswax-like soy substance. Ma’s company, ThermAvant Technologies, took the opportunity to infuse the bio-based waxes into a product on Earth.   

      A phase-change heat exchanger like this one uses uses a PCM that will help maintain a comfortable temperature in the Orion spacecraft. NASA-funded research into spacesuit material alternatives helped ThermAvant International LLC develop the Burnout thermal mug for coffee. Credit: NASA Released in 2018, the Burnout Mug is vacuum insulated with the wax called HeatZorb, sealed between the inner and outer shells. The wax is formulated to maintain the ideal temperature for hot drinks over time. As soon as hot liquid goes in, the wax absorbs excess heat and melts, resulting in a drinkable temperature in just a few moments. As the coffee starts to cool, that stored heat is released back into it. 

      The company is developing other uses for the same technology to meet unique needs in the medical field. Two in development are a small insulin container and a donor organ transportation box – both of which rely on specific, controlled temperatures. From hot beverages to life-saving medical equipment, NASA’s research continues to drive innovation across industries.  
      Read More Share
      Details
      Last Updated Sep 27, 2024 Related Terms
      Spinoffs Technology Transfer Technology Transfer & Spinoffs Explore More
      3 min read Measuring Moon Dust to Fight Air Pollution
      Article 1 week ago 2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 2 weeks ago 2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 
      NASA tech adds gecko grip to phone accessory
      Article 2 months ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      Orion Spacecraft
      Spacesuits
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The HASP 1.0 (High-Altitude Student Platform) scientific balloon mission launched Sept. 4, 2024, during NASA’s fall balloon campaign in Fort Sumner, N.M.NASA/Erin Reed NASA’s Scientific Balloon Program’s fifth balloon mission of the 2024 fall campaign took flight Wednesday, Sept. 4, 2024, from the agency’s Columbia Scientific Balloon Facility in Fort Sumner, New Mexico. The HASP 1.0 (High-Altitude Student Platform) mission remained in flight over 11 hours before it safely touched down. Recovery is underway.
      HASP is a partnership among the Louisiana Space Grant Consortium, the Astrophysics Division of NASA’s Science Mission Directorate, and the agency’s Balloon Program Office and Columbia Scientific Balloon Facility. The HASP platform supports up to 12 student-built payloads and is designed to flight test compact satellites, prototypes, and other small experiments. Since 2006, HASP has engaged more than 1,600 undergraduate and graduate students involved in the missions.
      Teams participating in the 2024 HASP 1.0 flight included: University of North Florida and University of North Dakota; Arizona State University; Louisiana State University; University of Colorado Boulder; College of the Canyons; Fort Lewis College; Capitol Technical College; University of Arizona; Universidad Nacional de Ingeniería (Peru); and McMaster University (Canada).
      A new, larger version of the High-Altitude Student Platform (HASP 2.0) had its engineering test flight a few days prior. HASP 2.0 will be able to accommodate twice as many student experiments as HASP 1.0 once operational in the next year.
      The remaining three balloon flights scheduled for the 2024 Fort Sumner fall campaign await next launch opportunities. To follow the missions, visit NASA’s Columbia Scientific Balloon Facility website for real-time updates on balloons altitudes and GPS locations during flight.
      For more information on NASA’s Scientific Balloon Program, visit:
      https://www.nasa.gov/scientificballoons
      Share
      Details
      Last Updated Sep 06, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.gov Related Terms
      Learning Resources Scientific Balloons Wallops Flight Facility View the full article
  • Check out these Videos

×
×
  • Create New...