Members Can Post Anonymously On This Site
Tonight's Moon 5th July 2023 - Looking At Lunar Features
-
Similar Topics
-
By NASA
8 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Virtual meetings feeling a little stale? NASA has just unveiled a suite of new Artemis backgrounds to elevate your digital workspace.
From the majesty of the Artemis I launch lighting up the night sky to the iconic image of the Orion spacecraft with the Moon and Earth in view, these virtual backgrounds allow viewers to relive the awe-inspiring moments of Artemis I and glimpse the bright future that lies ahead as the Artemis campaign enables humans to live and work at the Moon’s South Pole region.
Scroll through to download your next virtual background for work, school, or just for fun, and learn about all things Artemis as the agency and its partners cross off milestones leading up to Artemis II and missions beyond.
Artemis I Launch
Credit: NASA/Bill Ingalls NASA’s SLS (Space Launch System) rocket carrying the Orion spacecraft launches on the Artemis I flight test on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I mission was the first integrated flight test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and ground systems. SLS and Orion launched at 1:47 a.m. EST from Launch Pad 39B at Kennedy.
Artemis II Crew
Credit: NASA Meet the astronauts who will fly around the Moon during the Artemis II mission. From left are Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA, and Mission Specialist Jeremy Hansen from the Canadian Space Agency.
Astronaut Regolith
Credit: NASA An artist’s concept of two suited Artemis crew members working on the lunar surface. The samples collected during future Artemis missions will continue to advance our knowledge of the solar system and help us understand the history and formation of Earth and the Moon, uncovering some of the mysteries that have long eluded scientists.
Exploration Ground Systems
Credit: NASA NASA’s mobile launcher, atop Crawler Transporter-2, is at the entrance to High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018, at NASA’s Kennedy Space Center in Florida. This is the first time that the modified mobile launcher made the trip to the pad and the VAB. The mobile launcher is the structure that is used to assemble, process, and launch the SLS rocket.
Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen atop a mobile launcher at Launch Pad 39B on Nov. 4, 2022, as Crawler Transporter-2 departs the pad following rollout at NASA’s Kennedy Space Center in Florida.
Credit: NASA After Orion splashed down in the Pacific Ocean, west of Baja California, the spacecraft was recovered by personnel on the USS Portland from the U.S. Department of Defense, including Navy amphibious specialists, Space Force weather specialists, and Air Force specialists, as well as engineers and technicians from NASA’s Kennedy Space Center in Florida, the agency’s Johnson Space Center in Houston, and Lockheed Martin Space Operations. Personnel from NASA’s Exploration Ground Systems led the recovery efforts.
Credit: NASA/Keegan Barber NASA’s SLS (Space Launch System) rocket with the Orion spacecraft aboard is seen atop a mobile launcher as it rolls out to Launch Complex 39B for the first time on March 17, 2022, at NASA’s Kennedy Space Center in Florida. At left is the Vehicle Assembly Building.
First Woman
Credit: NASA “First Woman” graphic novel virtual background featuring an illustration of the inside of a lunar space station outfitted with research racks and computer displays. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
Credit: NASA “First Woman” graphic novel virtual background featuring the illustration of the inside of a lunar space station outfitted with research racks and computer displays, along with zero-g indicator suited rubber duckies floating throughout. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
Credit: NASA This “First Woman” graphic novel virtual background features an illustrated scene from a lunar mission. At a lunar camp, one suited astronaut flashes the peace sign while RT, the robot sidekick, waves in the foreground. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
Gateway
Credit: NASA The Gateway space station hosts the Orion spacecraft and SpaceX’s deep space logistics spacecraft in a polar orbit around the Moon, supporting scientific discovery on the lunar surface during the Artemis IV mission.
Credit: Northrop Grumman and Thales Alenia Space The Gateway space station’s HALO (Habitation and Logistics Outpost) module, one of two of Gateway’s habitation elements where astronauts will live, conduct science, and prepare for lunar surface missions, successfully completed welding in Turin, Italy. Following a series of tests to ensure its safety, the future home for astronauts will travel to Gilbert, Arizona, for final outfitting ahead of launch to lunar orbit. Gateway will be humanity’s first space station in lunar orbit and is an essential component of the Artemis campaign to return humans to the Moon for scientific discovery and chart a path for human missions to Mars.
Lunar Surface
Credit: SpaceX Artist’s concept of SpaceX Starship Human Landing System, or HLS, which is slated to transport astronauts to and from the lunar surface during Artemis III and IV.
Credit: Blue Origin Artist’s concept of Blue Origin’s Blue Moon MK-2 human lunar lander, which is slated to land astronauts on the Moon during Artemis V.
Credit: NASA The “Moon buggy” for NASA’s Artemis missions, the Lunar Terrain Vehicle (LTV), is seen here enabling a pair of astronauts to explore more of the Moon’s surface and conduct science research farther away from the landing site. NASA has selected Intuitive Machines, Lunar Outpost, and Venturi Astrolab to advance capabilities for an LTV.
Credit: JAXA/Toyota An artist’s concept of the pressurized rover — which is being designed, developed, and operated by JAXA (Japan Aerospace Exploration Agency) — is seen driving across the lunar terrain. The pressurized rover will serve as a mobile habitat and laboratory for the astronauts to live and work for extended periods of time on the Moon.
Logo
Credit: NASA The NASA “meatball” logo. The round red, white, and blue insignia was designed by employee James Modarelli in 1959, NASA’s second year. The design incorporates references to different aspects of NASA’s missions.
Credit: NASA The NASA meatball logo (left) and Artemis logo side by side.
Moon Phases
Credit: NASA The different phases of the Moon, shown in variations of shadowing, extend across this virtual background.
Orion
Credit: NASA On flight day 5 during Artemis I, the Orion spacecraft took a selfie while approaching the Moon ahead of the outbound powered flyby — a burn of Orion’s main engine that placed the spacecraft into lunar orbit. During this maneuver, Orion came within 81 miles of the lunar surface.
Credit: NASA On flight day 13 during Artemis I, Orion reached its maximum distance from Earth at 268,563 miles away from our home planet, traveling farther than any other spacecraft built for humans.
Credit: NASA This first high-resolution image, taken on the first day of the Artemis I mission, was captured by a camera on the tip of one of Orion’s solar arrays. The spacecraft was 57,000 miles from home and distancing itself from planet Earth as it approached the Moon and distant retrograde orbit.
Silhouettes
Credit: NASA In this virtual background, various scenes from Earth, Moon, and Mars are depicted within the silhouette outlines of three suited astronauts, artistically representing the interconnected nature of human space exploration from low Earth orbit to the Moon and, one day, human missions to Mars.
SLS (Space Launch System)
Credit: Joel Kowsky In this sunrise photo at NASA’s Kennedy Space Center in Florida, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B as preparations continued for the Artemis I launch.
Credit: NASA/Joel Kowsky In this close-up image, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B on Nov. 12, 2022, at NASA’s Kennedy Space Center in Florida.
Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen at sunrise atop the mobile launcher at Launch Pad 39B on Nov. 7, 2022, at NASA’s Kennedy Space Center in Florida.
Earth, Moon, and Mars
Credit: NASA From left, an artist’s concept of the Moon, Earth, and Mars sharing space. NASA’s long-term goal is to send humans to Mars, and we will use what we learn at the Moon to help us get there. This is the agency’s Moon to Mars exploration approach.
Credit: NASA In this artist’s concept, the upper portion of a blended sphere represents the Earth, Moon, and Mars.
Credit: NASA An artist’s concept showing, from left, the Earth, Moon, and Mars in sequence. Mars remains our horizon goal for human exploration because it is a rich destination for scientific discovery and a driver of technologies that will enable humans to travel and explore far from Earth.
About the Author
Catherine E. Williams
Share
Details
Last Updated Dec 02, 2024 Related Terms
Humans in Space Artemis Artemis 1 Artemis 2 Artemis 3 Artemis 4 Artemis 5 Exploration Systems Development Mission Directorate Explore More
6 min read NASA’s Commercial Partners Make Progress on Low Earth Orbit Projects
Article 7 days ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
Article 1 week ago 8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Caption: Firefly Aerospace’s Blue Ghost Mission One lander, seen here, will carry 10 NASA science and technology instruments to the Moon’s near side when it launches from NASA’s Kennedy Space Center in Florida on a SpaceX Falcon 9 rocket, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. Credit: Firefly Aerospace Media accreditation is open for the next delivery to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign for the benefit of humanity. A six-day launch window opens no earlier than mid-January 2025 for the first Firefly Aerospace launch to the lunar surface.
The Blue Ghost flight, carrying 10 NASA science and technology instruments, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. Media prelaunch and launch activities will take place at NASA Kennedy.
Attendance for this launch is open to U.S. citizens and international media. International media must apply by Monday, Dec. 9, and U.S. media must apply by Thursday, Jan. 2. Media interested in participating in launch activities must apply for credentials at:
https://media.ksc.nasa.gov
Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support such as space for satellite trucks, tents, or electrical connections, please send an email by Thursday, Jan. 2, to: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
The company named the mission Ghost Riders in the Sky. It will land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the lunar near side. The mission will carry NASA investigations and first-of-their-kind technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. This includes payloads testing lunar subsurface drilling, regolith sample collection, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured also benefits humanity by providing insights into how space weather and other cosmic forces impact Earth.
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights.
As part of its Artemis campaign, NASA is working with multiple U.S. companies to deliver science and technology to the lunar surface. These companies are eligible to bid on task orders to deliver NASA payloads to the Moon. The task order includes payload integration and operations and launching from Earth and landing on the surface of the Moon. Existing CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.
For more information about the agency’s Commercial Lunar Payload Services initiative, see:
https://www.nasa.gov/clps
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Wynn Scott / Natalia Riusech
Johnson Space Center, Houston
281-483-5111
wynn.b.scott@nasa.gov / nataila.s.riusech@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-867-2468
antonia.jaramillobotero@nasa.gov
Share
Details
Last Updated Nov 25, 2024 LocationNASA Headquarters Related Terms
Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ESI24 Nam Quadchart
SungWoo Nam
University of California, Irvine
Lunar dust may seem unimposing, but it presents a significant challenge for space missions. Its abrasive and jagged particles can damage equipment, clog devices, and even pose health risks to astronauts. This project addresses such issues by developing advanced coatings composed of crumpled nano-balls made from atomically thin 2D materials such as MoS₂, graphene, and MXenes. By crumpling these nanosheets—much like crumpling a piece of paper—we create compression and aggregation resistant particles that can be dispersed in sprayable solutions. As a thin film coating, these crumpled nano-balls form corrugated structures that passively reduce dust adhesion and surface wear. The deformable crumpled nano-ball (DCN) coating works by minimizing the contact area between lunar dust and surfaces, thanks to its unique nano-engineered design. The 2D materials exhibit exceptional durability, withstanding extreme thermal and vacuum environments, as well as resisting radiation damage. Additionally, the flexoelectric and electrostatically dissipative properties of MoS₂, graphene, and MXenes allow the coating to neutralize and dissipate electrical charges, making them highly responsive to the charged lunar dust environment. The project will be executed in three phases, each designed to bring the technology closer to real-world space applications. First, we will synthesize the crumpled nano-balls and investigate their adhesion properties using advanced microscopy techniques. The second phase will focus on fundamental testing in simulated lunar environments, where the coating will be exposed to extreme temperatures, vacuum, radiation, and abrasion. Finally, the third phase will involve applying the coating to space-heritage materials and conducting comprehensive testing in a simulated lunar environment, targeting up to 90% dust clearance and verifying durability over repeated cycles of dust exposure. This research aligns with NASA’s goals for safer, more sustainable lunar missions by reducing maintenance requirements and extending equipment lifespan. Moreover, the potential applications extend beyond space exploration, with the technology offering promising advances in terrestrial industries such as aerospace and electronics by providing ultra-durable, wear-resistant surfaces. Ultimately, the project contributes to advancing materials science and paving the way for NASA’s long-term vision of sustainable space exploration.
Back to ESI 2024
Keep Exploring Discover More Topics From STRG
Space Technology Mission Directorate
STMD Solicitations and Opportunities
Space Technology Research Grants
About STRG
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ESI24 Zou Quadchart
Min Zou
University of Arkansas, Fayetteville
Lunar dust, with its highly abrasive and electrostatic properties, poses serious threats to the longevity and functionality of spacecraft, habitats, and equipment operating on the Moon. This project aims to develop advanced bioinspired surface textures that effectively repel lunar dust, targeting critical surfaces such as habitat exteriors, doors, and windows. By designing and fabricating innovative micro-/nano-hierarchical core-shell textures, we aim to significantly reduce dust adhesion, ultimately enhancing the performance and durability of lunar infrastructure. Using cutting-edge fabrication methods like two-photon lithography and atomic layer deposition, our team will create resilient, dust-repelling textures inspired by natural surfaces. We will also conduct in-situ testing with a scanning electron microscope to analyze individual particle adhesion and triboelectric effects, gaining critical insights into lunar dust behavior on engineered surfaces. These findings will guide the development of durable surfaces for long-lasting, low-maintenance lunar equipment, with broader applications for other dust-prone environments.
Back to ESI 2024
Keep Exploring Discover More Topics From STRG
Space Technology Mission Directorate
STMD Solicitations and Opportunities
Space Technology Research Grants
About STRG
View the full article
-
By NASA
An artist’s concept of SpaceX’s Starship Human Landing System (HLS) on the Moon. NASA is working with SpaceX to develop the Starship HLS to carry astronauts from lunar orbit to the Moon’s surface and back for Artemis III and Artemis IV. Starship HLS is roughly 50 meters tall, or about the length of an Olympic swimming pool. SpaceX This artist’s concept depicts a SpaceX Starship tanker (bottom) transferring propellant to a Starship depot (top) in low Earth orbit. Before astronauts launch in Orion atop the agency’s SLS (Space Launch System) rocket, SpaceX will launch a storage depot to Earth orbit. For the Artemis III and Artemis IV missions, SpaceX plans to complete propellant loading operations in Earth orbit to send a fully fueled Starship Human Landing System (HLS) to the Moon. SpaceX An artist’s concept shows how a crewed Orion spacecraft will dock to SpaceX’s Starship Human Landing System (HLS) in lunar orbit for Artemis III. Starship HLS will dock directly to Orion so that two astronauts can transfer to the lander to descend to the Moon’s surface, while two others remain in Orion. Beginning with Artemis IV, NASA’s Gateway lunar space station will serve as the crew transfer point. SpaceX The artist’s concept shows two Artemis III astronauts preparing to step off the elevator at the bottom of SpaceX’s Starship HLS to the Moon’s surface. At about 164 feet (50 m), Starship HLS will be about the same height as a 15-story building. (SpaceX)The elevator will be used to transport crew and cargo between the lander and the surface. SpaceX NASA is working with U.S. industry to develop the human landing systems that will safely carry astronauts from lunar orbit to the surface of the Moon and back throughout the agency’s Artemis campaign.
For Artemis III, the first crewed return to the lunar surface in over 50 years, NASA is working with SpaceX to develop the company’s Starship Human Landing System (HLS). Newly updated artist’s conceptual renders show how Starship HLS will dock with NASA’s Orion spacecraft in lunar orbit, then two Artemis crew members will transfer from Orion to Starship and descend to the surface. There, astronauts will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. Prior to the crewed Artemis III mission, SpaceX will perform an uncrewed landing demonstration mission on the Moon.
NASA is also working with SpaceX to further develop the company’s Starship lander to meet an extended set of requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer.
The artist’s concept portrays SpaceX’s Starship HLS with two Raptor engines lit performing a braking burn prior to its Moon landing. The burn will occur after Starship HLS departs low lunar orbit to reduce the lander’s velocity prior to final descent to the lunar surface. SpaceX With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more on HLS, visit:
https://www.nasa.gov/humans-in-space/human-landing-system
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.