Jump to content

Harvard scientist Avi Loeb claims 'Metallic Spheres' found on ocean floor may be alien tech


Recommended Posts

Posted
The discovery of microscopic spherules by a team of scientists, including Harvard Professor Avi Loeb, during an expedition off the coast of Papua New Guinea has raised intriguing possibilities. 

Slide1.jpg

According to Professor Loeb, these iron sphere-shaped fragments could potentially be remnants of an extraterrestrial object, labeled "IM1, that exploded in Earth's lower atmosphere before falling into the Pacific Ocean nearly a decade ago. 

The spherules, weighing a total of 35 milligrams, were collected using a magnetic sled. Professor Loeb suggests that the unusual material strength and properties of the fragments make them distinct from space rocks previously studied by NASA. He speculates that the source of these spherules could be either a natural environment different from our solar system or an extraterrestrial technological civilization. 

1.png

Avi Loeb, discusses their findings, saying the objects are being examined with the best instruments available. If future studies support the hypothesis that these spherules are indeed remnants of an extraterrestrial object, it would represent a significant discovery with profound implications for our understanding of the universe and the existence of extraterrestrial life.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Career Spotlight: Scientist (Ages 14-18)
      What does a scientist do?
      Science is about exploring answers to questions. A scientist uses research and evidence to form hypotheses, test variables, and then share their findings.
      NASA scientists conduct groundbreaking research to answer some of humanity’s most profound questions. Most scientists start as project scientists in their early careers. They spend a lot of time publishing their peer-reviewed literature and presenting scientific research. Senior-level scientists provide leadership in the NASA community, actively publish research group work, and take on management roles.
      What are some of the different types of scientists that work at NASA?
      Many types of scientists work at NASA to support its wide variety of missions. The agency’s scientists research the foods we send to space, the habitability of other planets, the weather in space, and so much more. Here are a few examples of types of scientists at NASA.
      Planetary scientist: Discovers and studies the planetary objects in our solar system. These efforts shed light on the history of the solar system and the distribution of life within it.
      Astrobiologist: Studies the origins of life, how life evolves, and where it might be found in the universe.
      Astrophysicist: Studies the physical and chemical structures of stars, planets, and other natural objects found in space.
      Biological/physical scientist: Studies how biological and physical processes work in challenging environments like space. This information helps NASA design longer human space missions and also benefits life on Earth.
      Earth scientist: Uses observations and data from satellites and other sources to study Earth’s atmosphere, oceans, land cover, and land use.
      Heliophysicist: Studies the Sun and its behaviors, such as magnetic fields, solar wind, and space weather. This knowledge helps us better understand and predict the Sun’s effects on Earth and in space.
      How can I become a scientist?
      Focus on building your scientific knowledge and skills. You can do this by taking challenging academic courses, participating in science fairs, and joining extracurricular activities that have a scientific focus. This is also a good time to research what types of sciences you’re most interested in, possible careers in those fields, and academic degrees required for those jobs.
      Scientists typically need at least a four-year degree. Most pursue a master’s degree or even a doctorate (Ph.D.) to become experts in their field.
      How can I start preparing today to become a scientist?
      Interested in applying some science skills right away? NASA provides a variety of hands-on activities for a range of skill levels. The space agency also offers student challenges, competitions, and activities that provide authentic experience in a variety of science fields. For up-to-date opportunities, visit:
      NASA STEM Opportunities and Activities for Students NASA Science Learning Opportunities NASA also offers paid internships for U.S. citizens aged 16 and up. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.
      Advice from NASA scientists
      “Take advantage of opportunities in different fields like attending summer classes, volunteering on the weekends, visiting museums, attending community lectures, and reading introductory books at the library. These are a few ways to expand your scope of possibility within the sciences, while simultaneously narrowing your focus in a field.” – Angela Garcia, exploration geologist
      “The key to being a scientist is to love asking questions. If you are fascinated about how and why things work — you are already a scientist.”
      Nicola Fox
      NASA Associate Administrator, Science Mission Directorate
      “One general skill that is often overlooked is the ability to write well and clearly. There’s a misconception that being a scientist means using big words and writing in ways that no one understands, when it’s actually the opposite. The ability to communicate your thoughts and ideas so that a child can understand is not easy, but it’s essential for good scientific writing.” – Matt Mickens, NASA horticulturist
      Additional Resources
      Careers in Science and Research
      NASA Science Career Path Navigator
      NASA Science Mission Directorate
      People of NASA Science
      Explore NASA+ Scientist Resources
      Keep Exploring Discover More Topics From NASA
      For Students Grades 9-12
      NASA Internship Programs
      NASA STEM Opportunities and Activities For Students
      Careers
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This team from University High School in Irvine, California, won the 2025 regional Oceans Science Bowl, hosted by NASA’s Jet Propulsion Laboratory. From left: Nethra Iyer, Joanne Chen, Matthew Feng, Avery Hexun, Angelina Yan, and coach David Knight.NASA/JPL-Caltech The annual regional event puts students’ knowledge of ocean-related science to the test in a fast-paced academic competition.
      A team of students from University High School in Irvine earned first place at a fast-paced regional academic competition focused on ocean science disciplines and hosted by NASA’S Jet Propulsion Laboratory in Southern California.
      Eight teams from Los Angeles and Orange counties competed at the March 29 event, dubbed the Los Angeles Surf Bowl. It was the last of about 20 regional competitions held across the U.S. this year in the lead-up to the virtual National Ocean Sciences Bowl finals event in mid-May.
      Santa Monica High School earned second place; Francisco Bravo Medical Magnet High School in Los Angeles came in third. With its victory, University repeated its winning performance from last year. The school also won the JPL-hosted regional Science Bowl earlier this month.
      Teams from all eight schools that participated in the JPL-hosted 2025 regional Ocean Sciences Bowl pose alongside volunteers and coaches.NASA/JPL-Caltech For the Ocean Sciences Bowl, teams are composed of four to five students and a coach. To prepare for the event, team members spend months answering multiple-choice questions with a “Jeopardy!”-style buzzer in just five seconds. Questions come in several categories, including biology, chemistry, geology, and physics along with related geography, technology, history, policy, and current events topics.
      A question in the chemistry category might be “What chemical is the principal source of energy at many of Earth’s hydrothermal vent systems?” (It’s hydrogen sulfide.) Other questions can be considerably more challenging.
      When a team member buzzes in and gives the correct answer to a multiple-choice question, the team earns a bonus question, which allows teammates to consult with one another to come up with an answer. More complicated “team challenge questions” prompt students to work together for a longer period. The theme of this year’s competition is “Sounding the Depths: Understanding Ocean Acoustics.”
      University High junior Matthew Feng, a return competitor, said the team’s success felt like a payoff for hours of studying together, including on weekends. He keeps coming back to the competition partly for the sense of community and also for the personal challenge, he said. “It’s nice to compete and meet people, see people who were here last year,” Matthew added. “Pushing yourself mentally — the first year I was shaking so hard because I wasn’t used to that much adrenaline.”
      Since 2000, JPL’s Public Services Office has coordinated the Los Angeles regional contest with the help of volunteers from laboratory staff and former Ocean Sciences Bowl participants in the local community. JPL is managed for NASA by Caltech.
      The National Ocean Sciences Bowl is a program of the Center for Ocean Leadership at the University Corporation for Atmospheric Research, a nonprofit consortium of colleges and universities focused in part on Earth science-related education.
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-044
      Share
      Details
      Last Updated Mar 31, 2025 Related Terms
      Jet Propulsion Laboratory STEM Engagement at NASA Explore More
      6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
      Article 7 days ago 5 min read NASA Takes to the Air to Study Wildflowers
      Article 1 week ago 6 min read Next-Generation Water Satellite Maps Seafloor From Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. 
      The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications. 
      NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost. 
      Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations. 
      Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia. 
      Explore More
      4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination
      Article 10 mins ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 36 mins ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 20 hours ago Facebook logo @NASATechnology @NASA_Technology Share
      Details
      Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
      Armstrong Flight Research Center Game Changing Development Program Space Communications Technology Space Technology Mission Directorate Technology Technology for Living in Space Technology for Space Travel View the full article
    • By NASA
      Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on the Red Planet to date. The finding, published Monday in the Proceedings of the National Academy of Sciences, suggests prebiotic chemistry may have advanced further on Mars than previously observed.
      Scientists probed an existing rock sample inside Curiosity’s Sample Analysis at Mars (SAM) mini-lab and found the molecules decane, undecane, and dodecane. These compounds, which are made up of 10, 11, and 12 carbons, respectively, are thought to be the fragments of fatty acids that were preserved in the sample. Fatty acids are among the organic molecules that on Earth are chemical building blocks of life.
      Living things produce fatty acids to help form cell membranes and perform various other functions. But fatty acids also can be made without life, through chemical reactions triggered by various geological processes, including the interaction of water with minerals in hydrothermal vents.
      While there’s no way to confirm the source of the molecules identified, finding them at all is exciting for Curiosity’s science team for a couple of reasons.
      Curiosity scientists had previously discovered small, simple organic molecules on Mars, but finding these larger compounds provides the first evidence that organic chemistry advanced toward the kind of complexity required for an origin of life on Mars.
      This graphic shows the long-chain organic molecules decane, undecane, and dodecane. These are the largest organic molecules discovered on Mars to date. They were detected in a drilled rock sample called “Cumberland” that was analyzed by the Sample Analysis at Mars lab inside the belly of NASA’s Curiosity rover. The rover, whose selfie is on the right side of the image, has been exploring Gale Crater since 2012. An image of the Cumberland drill hole is faintly visible in the background of the molecule chains. NASA/Dan Gallagher The new study also increases the chances that large organic molecules that can be made only in the presence of life, known as “biosignatures,” could be preserved on Mars, allaying concerns that such compounds get destroyed after tens of millions of years of exposure to intense radiation and oxidation.
      This finding bodes well for plans to bring samples from Mars to Earth to analyze them with the most sophisticated instruments available here, the scientists say.
      “Our study proves that, even today, by analyzing Mars samples we could detect chemical signatures of past life, if it ever existed on Mars,” said Caroline Freissinet, the lead study author and research scientist at the French National Centre for Scientific Research in the Laboratory for Atmospheres and Space Observations in Guyancourt, France
      In 2015, Freissinet co-led a team that, in a first, conclusively identified Martian organic molecules in the same sample that was used for the current study. Nicknamed “Cumberland,” the sample has been analyzed many times with SAM using different techniques.

      NASA’s Curiosity rover drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior. Curiosity used the Mars Hand Lens Imager camera on the rover’s arm to capture this view of the hole in Cumberland on the same sol as the hole was drilled. The diameter of the hole is about 0.6 inches. The depth of the hole is about 2.6 inches. NASA/JPL-Caltech/MSSS Curiosity drilled the Cumberland sample in May 2013 from an area in Mars’ Gale Crater called “Yellowknife Bay.” Scientists were so intrigued by Yellowknife Bay, which looked like an ancient lakebed, they sent the rover there before heading in the opposite direction to its primary destination of Mount Sharp, which rises from the floor of the crater.
      The detour was worth it: Cumberland turns out to be jam-packed with tantalizing chemical clues to Gale Crater’s 3.7-billion-year past. Scientists have previously found the sample to be rich in clay minerals, which form in water. It has abundant sulfur, which can help preserve organic molecules. Cumberland also has lots of nitrates, which on Earth are essential to the health of plants and animals, and methane made with a type of carbon that on Earth is associated with biological processes.
      Perhaps most important, scientists determined that Yellowknife Bay was indeed the site of an ancient lake, providing an environment that could concentrate organic molecules and preserve them in fine-grained sedimentary rock called mudstone.
      “There is evidence that liquid water existed in Gale Crater for millions of years and probably much longer, which means there was enough time for life-forming chemistry to happen in these crater-lake environments on Mars,” said Daniel Glavin, senior scientist for sample return at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a study co-author.
      The recent organic compounds discovery was a side effect of an unrelated experiment to probe Cumberland for signs of amino acids, which are the building blocks of proteins. After heating the sample twice in SAM’s oven and then measuring the mass of the molecules released, the team saw no evidence of amino acids. But they noticed that the sample released small amounts of decane, undecane, and dodecane.
      Because these compounds could have broken off from larger molecules during heating, scientists worked backward to figure out what structures they may have come from. They hypothesized these molecules were remnants of the fatty acids undecanoic acid, dodecanoic acid, and tridecanoic acid, respectively.
      The scientists tested their prediction in the lab, mixing undecanoic acid into a Mars-like clay and conducting a SAM-like experiment. After being heated, the undecanoic acid released decane, as predicted. The researchers then referenced experiments already published by other scientists to show that the undecane could have broken off from dodecanoic acid and dodecane from tridecanoic acid.
      The authors found an additional intriguing detail in their study related to the number of carbon atoms that make up the presumed fatty acids in the sample. The backbone of each fatty acid is a long, straight chain of 11 to 13 carbons, depending on the molecule. Notably, non-biological processes typically make shorter fatty acids, with less than 12 carbons.
      It’s possible that the Cumberland sample has longer-chain fatty acids, the scientists say, but SAM is not optimized to detect longer chains.
      Scientists say that, ultimately, there’s a limit to how much they can infer from molecule-hunting instruments that can be sent to Mars. “We are ready to take the next big step and bring Mars samples home to our labs to settle the debate about life on Mars,” said Glavin.
      This research was funded by NASA’s Mars Exploration Program. Curiosity’s Mars Science Laboratory mission is led by NASA’s Jet Propulsion Laboratory in Southern California; JPL is managed by Caltech for NASA. SAM (Sample Analysis at Mars) was built and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. CNES (the French Space Agency) funded and provided the gas chromatograph subsystem on SAM. Charles Malespin is SAM’s principal investigator.
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      9 min read
      Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper
      Peer-reviewed scientific journal articles are the bedrock of science. Each one represents the culmination of a substantial project, impartially checked for accuracy and relevance – a proud accomplishment for any science team. 
      The person who takes responsibility for writing the paper must inevitably and repeatedly  write, edit, and rewrite its content as they receive comments and constructive criticism from colleagues, peers, and editors. And the process involves much more than merely re-writing the words. Implementing feedback and polishing the paper regularly involves  reanalyzing data and conducting additional analyses as needed, over and over again. The person who  successfully climbs this mountain of effort can then often earn the honor of being named the first author of a peer-reviewed scientific publication. To our delight, more and more of NASA’s citizen scientists have taken on this demanding challenge, and accomplished this incredible feat.
      Michiharu Hyogo is one of these pioneers. His paper, “Unveiling the Infrared Excess of SIPS J2045-6332: Evidence for a Young Stellar Object with Potential Low-Mass Companion” (Hyogo et al. 2025) was recently accepted for publication in the journal Monthly Notices of the Royal Astronomical Society. He conceived of the idea for this paper, performed most of the research using of data from NASA’s retired Wide-field Infrared Survey Explorer (WISE) mission, and submitted it to the journal. We asked him some questions about his life and he shared with us some of the secrets to his success.
      Q: Where do you live, Michi?
      A: I have been living in Tokyo, Japan since the end of 2012. Before that, I lived outside Japan for a total of 21 years, in countries such as Canada, the USA, and Australia.
      Q: Which NASA Citizen Science projects have you worked on?
      A: I am currently working on three different NASA-sponsored projects: Disk Detective, Backyard Worlds: Planet 9, and Planet Patrol.
      Q: What do you do when you’re not working on these projects?
      A: Until March of last year, I worked as a part-time lecturer at a local university in Tokyo. At the moment, I am unemployed and looking for similar positions. My dream is to work at a community college in the USA, but so far, my job search has been unsuccessful. In the near future, I hope to teach while also working on projects like this one. This is my dream.
      Q: How did you learn about NASA Citizen Science?
      A: It’s a very long story. A few years after completing my master’s degree, around 2011, a friend from the University of Hawaii (where I did my bachelor’s degree) introduced me to one of the Zooniverse projects. Since it was so long ago, I can’t remember exactly which project it was—perhaps Galaxy Zoo or another one whose name escapes me.
      I definitely worked on Planet Hunters, classifying all 150,000 light curves from (NASA’s) Kepler observatory. Around the time I completed my classifications for Planet Hunters, I came across Disk Detective as it was launching. A friend on Facebook shared information about it, stating that it was “NASA’s first sponsored citizen science project aimed at publishing scientific papers”.
      At that time, I was unemployed and had plenty of free time, so I joined without giving much thought to the consequences. I never expected that this project would eventually lead me to write my own paper — it was far beyond anything I had imagined.
        
      Q: What would you say you have gained from working on these NASA projects?A: Working on these NASA-sponsored projects has been an incredibly valuable experience for me in multiple ways. Scientifically, I have gained hands-on experience in analyzing astronomical data, identifying potential celestial objects, and contributing to real research efforts. Through projects like Disk Detective,Backyard Worlds: Planet 9, and Planet Patrol, I have learned how to systematically classify data, recognize patterns, and apply astrophysical concepts in a practical setting.
      Beyond the technical skills, I have also gained a deeper understanding of how citizen science can contribute to professional research. Collaborating with experts and other volunteers has improved my ability to communicate scientific ideas and work within a research community.
      Perhaps most importantly, these projects have given me a sense of purpose and the opportunity to contribute to cutting-edge discoveries. They have also led to unexpected opportunities, such as co-authoring scientific papers — something I never imagined when I first joined. Overall, these experiences have strengthened my passion for astronomy and my desire to continue contributing to the field.
      Q: How did you make the discovery that you wrote about in your paper?
      A: Well, the initial goal of this project was to discover circumstellar disks around brown dwarfs. The Disk Detective team assembled more than 1,600 promising candidates that might possess such disks. These objects were identified and submitted by volunteers from the same project, following the physical criteria outlined within it.
      Among these candidates, I found an object with the largest infrared excess and the fourth-latest spectral type. This was the moment I first encountered the object and found it particularly interesting, prompting me to investigate it further.
      Although we ultimately did not discover a disk around this object, we uncovered intriguing physical characteristics, such as its youth and the presence of a low-mass companion with a spectral type of L3 to L4.
      Q: How did you feel when your paper was accepted for publication?
      A: Thank you for asking this question—I truly appreciate it. I feel like the biggest milestone of my life has finally been achieved!
      This is the first time I genuinely feel that I have made a positive impact on society. It feels like a miracle. Imagine if we had a time machine and I could go back five years to tell my past self this whole story. You know what my past self would say? “You’re crazy.”
      Yes, I kept dreaming about this, and deep down, I was always striving toward this goal because it has been my purpose in life since childhood. I’m also proud that I accomplished something like this without being employed by a university or research institute. (Ironically, I wasn’t able to achieve something like this while I was in grad school.)
      I’m not sure if there are similar examples in the history of science, but I’m quite certain this is a rare event.
      Q: What would you say to other citizen scientists about the process of writing a paper?
      A: Oh, there are several important things I need to share with them. 
      First, never conduct research entirely on your own. Reach out to experts in your field as much as possible. For example, in my case, I collaborated with brown dwarf experts from the Backyard Worlds: Planet 9 team. When I completed the first draft of my paper, I sent it to all my collaborators to get their feedback on its quality and to check if they had any comments on the content. It took some time, but I received a lot of helpful suggestions that ultimately improved the clarity and conciseness of my paper.
      If this is your first time receiving extensive feedback, it might feel overwhelming. However, you should see it as a valuable opportunity—one that will lead you to stronger research results. I am truly grateful for the feedback I received. This process will almost certainly help you receive positive feedback from referees when you submit your own paper. That’s exactly what happened to me.
      Second, do not assume that others will automatically understand your research for you. This seems to be a common challenge among many citizen scientists. First, you must have a clear understanding of your own research project. Then, it is crucial to communicate your progress clearly and concisely, without unnecessary details. If you have questions—especially when you are stuck — be specific.
      For example, I frequently attend Zoom meetings for various projects, including Backyard Worlds: Planet 9 and Disk Detective. In every meeting, I give a brief recap of what I’ve been working on — every single time — to refresh the audience’s memory. This helps them stay engaged and remember my research. (Screen sharing is especially useful for this.) After the recap, I present my questions. This approach makes it much easier for others to understand where I am in my research and, ultimately, helps them provide potential solutions to the challenges I’m facing.
      Lastly, use Artificial Intelligence (AI) as much as possible. For tasks like editing, proofreading, and debugging, AI tools can be incredibly helpful. I don’t mean to sound harsh, but I find it surprising that some people still do these things manually. In many cases, this can be a waste of time. I strongly believe we should rely on machines for tasks that we either don’t need to do ourselves or simply cannot do. This approach saves time and significantly improves productivity.
      Q: Thank you for sharing all these useful tips! Is there anything else you would like to add?
      A: I would like to sincerely thank all my collaborators for their patience and support throughout this journey. I know we have never met in person, and for some of you, this may not be a familiar way to communicate (it wasn’t for me at first either). If that’s the case, I completely understand. I truly appreciate your trust in me and in this entirely online mode of communication. Without your help, none of what I have achieved would have been possible.
      I am now thinking about pushing myself to take on another set of research projects. My pursuit of astronomical research will not stop, and I hope you will continue to follow my journey. I will also do my best to support others along the way.
      Share








      Details
      Last Updated Mar 18, 2025 Related Terms
      Citizen Science Astrophysics Explore More
      5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet


      Article


      1 day ago
      5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide


      Article


      2 days ago
      2 min read Hubble Sees a Spiral and a Star


      Article


      5 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...