Members Can Post Anonymously On This Site
All new ESA photo library for high-resolution images
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A super pressure balloon with the EUSO-2 payload is prepared for launch from Wānaka, New Zealand, during NASA’s campaign in 2023.NASA/Bill Rodman NASA’s Scientific Balloon Program has returned to Wānaka, New Zealand, for two scheduled flights to test and qualify the agency’s super pressure balloon technology. These stadium-sized, heavy-lift balloons will travel the Southern Hemisphere’s mid-latitudes for planned missions of 100 days or more.
Launch operations are scheduled to begin in late March from Wānaka Airport, NASA’s dedicated launch site for mid-latitude, ultra long-duration balloon missions.
“We are very excited to return to New Zealand for this campaign to officially flight qualify the balloon vehicle for future science investigations,” said Gabriel Garde, chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “Our dedicated team both in the field and at home has spent years in preparation for this opportunity, and it has been through their hard work, fortitude, and passion that we are back and fully ready for the upcoming campaign.”
While the primary flight objective is to test and qualify the super pressure balloon technology, the flights will also host science missions and technology demonstrations. The High-altitude Interferometer Wind Observation (HIWIND), led by High Altitude Observatory, National Center for Atmospheric Research in Boulder, Colorado, will fly as a mission of opportunity on the first flight. The HIWIND payload will measure neutral wind in the part of Earth’s atmosphere called the thermosphere. Understanding these winds will help scientists predict changes in the ionosphere, which can affect communication and navigation systems. The second flight will support several piggyback missions of opportunity, or smaller payloads, including:
Compact Multichannel Imaging Camera (CoMIC), led by University of Massachusetts Lowell, will study and measure how Earth’s atmosphere scatters light at high altitudes and will measure airglow, specifically the red and green emissions. High-altitude Infrasound from Geophysical Sources (HIGS), led by NASA’s Jet Propulsion Laboratory and Sandia National Laboratories, will measure atmospheric pressure to collect signals of geophysical events on Earth such as earthquakes and volcanic eruptions. These signals will help NASA as it develops the ability to measure seismic activity on Venus from high-altitude balloons. Measuring Ocean Acoustics North of Antarctica (MOANA), led by Sandia National Laboratories and Swedish Institute of Space Physics, aims to capture sound waves in Earth’s stratosphere with frequencies below the limit of human hearing. NASA’s Balloon Program Office at the agency’s Wallops Flight Facility is leading two technology demonstrations on the flight. The INterim Dynamics Instrumentation for Gondolas (INDIGO) is a data recorder meant to measure the shock of the gondola during the launch, termination, and landing phases of flight. The Sensor Package for Attitude, Rotation, and Relative Observable Winds – 7 (SPARROW-7), will demonstrate relative wind measurements using an ultrasonic device designed for the balloon float environment that measures wind speed and direction. NASA’s 18.8-million-cubic-foot (532,000-cubic-meter) helium-filled super pressure balloon, when fully inflated, is roughly the size of Forsyth-Barr Stadium in Dunedin, New Zealand, which has a seating capacity of more than 35,000. The balloon will float at an altitude of around 110,000 feet (33.5 kilometers), more than twice the altitude of a commercial airplane. Its flight path is determined by the speed and direction of wind at its float altitude.
The balloon is a closed system design to prevent gas release. It offers greater stability at float altitude with minimum altitude fluctuations during the day to night cycle compared to a zero pressure balloon. This capability will enable future missions to affordably access the near-space environment for long-duration science and technology research from the Southern Hemisphere’s mid-latitudes, including nighttime observations.
The public is encouraged to follow real-time tracking of the balloons’ paths as they circle the globe on the agency’s Columbia Scientific Balloon Facility website. Launch and tracking information will be shared across NASA’s social media platforms and the NASA Wallops blog.
NASA’s return to Wānaka marks the sixth super pressure balloon campaign held in New Zealand since the agency began balloon operations there in 2015. The launches are conducted in collaboration with the Queenstown Airport Corporation, Queenstown Lake District Council, New Zealand Space Agency, and Airways New Zealand.
“We are especially grateful to our local hosts, partners, and collaborators who have been with us from the beginning and are critical to the success of these missions and this campaign,” said Garde.
NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 16 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, sustaining engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division.
For more information on NASA’s Scientific Balloon Program, visit:
www.nasa.gov/scientificballoons.
By Olivia Littleton
NASA’s Wallops Flight Facility, Wallops Island, Va.
Share
Details
Last Updated Mar 14, 2025 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.govLocationWallops Flight Facility Related Terms
Scientific Balloons Astrophysics Astrophysics Division Goddard Space Flight Center Wallops Flight Facility Explore More
7 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
Article 3 months ago 7 min read NASA to Launch 8 Scientific Balloons From New Mexico
Article 7 months ago 5 min read NASA’s EXCITE Mission Prepared for Scientific Balloon Flight
Editor’s note: EXCITE successfully launched at 9:22 a.m. EDT (7:22 a.m. MDT) Saturday, Aug. 31.…
Article 7 months ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Test flights help airplane and drone manufacturers identify which parts of the aircraft are creating the most noise. Using hundreds of wired microphones makes it an expensive and time-consuming process to improve the design to meet noise requirements. Credit: NASA Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. It’s also sensitive enough to help farmers with pest problems. A commercial wireless microphone array recently created with help from NASA can locate crop-threatening insects by listening for the sounds they make in fields.
Since releasing its first commercial product in 2017, a sensor for wind tunnel testing developed with extensive help from NASA (Spinoff 2020), Interdisciplinary Consulting Corporation (IC2) has doubled its staff and moved to a larger lab and office space to produce its new WirelessArray product. Interested in making its own flight tests more affordable, NASA’s Langley Research Center in Hampton, Virginia, supported this project with Small Business Innovation Research contracts and expert consulting.
Airplanes go through noise testing and require certification that they don’t exceed the noise level set for their body type by the Federal Aviation Administration. When an airplane flies directly overhead, the array collects noise data to build a two-dimensional map of the sound pressure and its source. A custom software package translates that information for the end user.
For previous NASA noise testing, multiple semi-trucks hauled all the sensors, wires, power generators, racks of servers, and other equipment required for one flight test. The setup and teardown took six people three days. By contrast, two people can pack the WirelessArray into a minivan and set it up in a day.
IC2 is working with an entomologist to use acoustic data to listen for high-frequency insect sounds in agricultural settings. Discovering where insects feed on crops will make it possible for farmers to intervene before they do too much damage while limiting pesticide use to those areas. Whether it’s helping planes in the sky meet noise requirements or keeping harmful insects away from crops, NASA technology is finding sound-based solutions for the benefit of all.
Read More Share
Details
Last Updated Mar 14, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
Article 1 week ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
Article 3 months ago 3 min read NASA Gives The World a Brake
Article 3 months ago Keep Exploring Discover Related Topics
Langley Expertise and Facilities
Humans in Space
Technology Transfer & Spinoffs
Solar System
View the full article
-
By European Space Agency
Week in images: 10-14 March 2025
Discover our week through the lens
View the full article
-
By European Space Agency
The European Space Agency is releasing the first catalogue of astronomical data from the Euclid space telescope, including three new enormous image mosaics with zoom-ins. Follow the reveal live on Wednesday 19 March at 11:00 BST / 12:00 CET.
View the full article
-
By Space Force
John F. Bentivegna, Chief Master Sergeant of the Space Force, presents the new CMSSF Leadership Library
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.