Members Can Post Anonymously On This Site
Hubble Data Used to Look 10,000 Years into the Future
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 Min Read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. Credits:
ESA/Hubble, NASA, L. Lamy, L. Sromovsky An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements of Uranus’ interior rotation rate with a novel technique, achieving a level of accuracy 1,000 times greater than previous estimates. By analyzing more than a decade of Hubble observations of Uranus’ aurorae, researchers have refined the planet’s rotation period and established a crucial new reference point for future planetary research.
These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky Determining a planet’s interior rotation rate is challenging, particularly for a world like Uranus, where direct measurements are not possible. A team led by Laurent Lamy (of LIRA, Observatoire de Paris-PSL and LAM, Aix-Marseille Univ., France), developed an innovative method to track the rotational motion of Uranus’ aurorae: spectacular light displays generated in the upper atmosphere by the influx of energetic particles near the planet’s magnetic poles. This technique revealed that Uranus completes a full rotation in 17 hours, 14 minutes, and 52 seconds — 28 seconds longer than the estimate obtained by NASA’s Voyager 2 during its 1986 flyby.
“Our measurement not only provides an essential reference for the planetary science community but also resolves a long-standing issue: previous coordinate systems based on outdated rotation periods quickly became inaccurate, making it impossible to track Uranus’ magnetic poles over time,” explains Lamy. “With this new longitude system, we can now compare auroral observations spanning nearly 40 years and even plan for the upcoming Uranus mission.”
This image of Uranus’ aurorae was taken by the NASA/ESA Hubble Space Telescope on 10 October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky This breakthrough was possible thanks to Hubble’s long-term monitoring of Uranus. Over more than a decade, Hubble has regularly observed its ultraviolet auroral emissions, enabling researchers to produce magnetic field models that successfully match the changing position of the magnetic poles with time.
“The continuous observations from Hubble were crucial,” says Lamy. “Without this wealth of data, it would have been impossible to detect the periodic signal with the level of accuracy we achieved.”
Unlike the aurorae of Earth, Jupiter, or Saturn, Uranus’ aurorae behave in a unique and unpredictable manner. This is due to the planet’s highly tilted magnetic field, which is significantly offset from its rotational axis. The findings not only help astronomers understand Uranus’ magnetosphere but also provide vital information for future missions.
These findings set the stage for further studies that will deepen our understanding of one of the most mysterious planets in the Solar System. With its ability to monitor celestial bodies over decades, the Hubble Space Telescope continues to be an indispensable tool for planetary science, paving the way for the next era of exploration at Uranus.
These results are based on observations acquired with Hubble programs GO #12601, 13012, 14036, 16313 and DDT #15380 (PI: L. Lamy). The team’s paper was published in Nature Astronomy.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
Uranus Aurorae Image Trio (October 2022)
Close-up: Uranus Aurorae (October 2022)
Share
Details
Last Updated Apr 09, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
Astrophysics Communications Manager
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov
Bethany Downer
ESA/Hubble Chief Science Communications Officer
Bethany.Downer@esahubble.org
Related Terms
Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Science Planets The Solar System Uranus
Related Links and Downloads
Science Paper Release ESA’s Website
Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Studying the Planets and Moons
Reshaping Our Cosmic View: Hubble Science Highlights
Hubble’s Beautiful Universe
View the full article
-
By NASA
Explore This Section Science Science Activation NASA Science Supports Data… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
NASA Science Supports Data Literacy for K-12 Students
Data – and our ability to understand and use it – shapes nearly every aspect of our world, from decisions in our lives to the skills we need in the workplace and more. All of us, as either producers or consumers of data, will experience how it can be used to problem-solve and think critically as we navigate the world around us. For that reason, Data Science has become an increasingly essential and growing field that combines the collection, organization, analysis, interpretation, and sharing of data in virtually every area of life. As more data become more openly available, our Data Science skills will be of increasing importance. And yet, there is a widening gap between what students learn in school and the skills they will need to succeed in a data-driven world. The integration of Data Science into K-12 education opens doors to higher education, high-paying careers, and empowering learners to eventually participate in the creation of new knowledge and understanding of our world, and at least 29 states have reported some level of data science implementation at the K-12 level, including standard or framework adoption, course piloting, and educator professional learning.
In February 2025, the first-ever Data Science Education K-12: Research to Practice Conference (DS4E) took place in San Antonio, TX. A number of representatives from NASA’s Science Activation program and other NASA partners attended and presented along with over 250 educators, researchers, and school leaders from across the nation. Science Activation projects share a passion for helping people of all ages and backgrounds connect with NASA science experts, content, experiences, and learning resources, and the AEROKATS & ROVER Education Network (AREN); Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES); Global Learning and Observations to Benefit the Environment (GLOBE) Mission Earth; and My NASA Data teams did just that. Their presentations at the conference included:
“BYOD – Build or Bring Your Own Data: Developing K-12 Datasets” (PLACES) “Using NASA Data Resources as a Tool to Support Storytelling with Data in K-12 Education” (My NASA Data) “Place-Based Data Literacy: Real People, Real Places, Real Data” (AREN) Conference participants expressed interest in learning more about NASA assets, including data and subject matter experts. Stemming from their participation in this first DS4E, several Science Activation teams are collaborating to potentially host regional events next year under the umbrella of this effort (PLACES in particular), a wonderful example of how Science Activation project teams help lead the charge in the advancement of key Science, Technology, Education, and Mathematics (STEM) fields, such as Data Science, to activate minds and promote a deeper understanding of our world and beyond.
Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Data Science Education K-12 Research to Practice Conference Share
Details
Last Updated Apr 09, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Educators to Get Involved Opportunities For Researchers to Get Involved Explore More
3 min read Findings from the Field: A Research Symposium for Student Scientists
Article
1 day ago
34 min read Style Guidelines for ‘The Earth Observer’ Newsletter
Article
1 day ago
5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
Article
2 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
NASA Deep Space Station 43 (DSS-43), a 230-foot-wide (70-meter-wide) radio antenna at NASA’s Deep Space Network facility in Canberra, Australia, is seen in this March 4, 2020, image. DSS-43 was more than six times as sensitive as the original antenna at the Canberra complex, so it could communicate with spacecraft at greater distances from Earth. In fact, Canberra is the only complex that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
As the Canberra facility celebrated its 60th anniversary on March 19, 2025, work began on a new radio antenna. Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
Image credit: NASA
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The radio antennas of NASA’s Canberra Deep Space Communications Complex are lo-cated near the Australian capital. It’s one of three Deep Space Network facilities around the world that keep the agency in contact with dozens of space missions Located at Tidbinbilla Nature Reserve near the Australian capital city, the Canberra complex joined the Deep Space Network on March 19, 1965, with one 85-foot-wide (26-meter-wide) radio antenna. The dish, called Deep Space Station 42, was decommis-sioned in 2000. This photograph shows the facility in 1965.NASA Canberra joined the global network in 1965 and operates four radio antennas. Now, preparations have begun on its fifth as NASA works to increase the network’s capacity.
NASA’s Deep Space Network facility in Canberra, Australia celebrated its 60th anniversary on March 19 while also breaking ground on a new radio antenna. The pair of achievements are major milestones for the network, which communicates with spacecraft all over the solar system using giant dish antennas located at three complexes around the globe.
Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
Suzanne Dodd, the director for the Interplanetary Network Directorate at JPL, addresses an audience at the Deep Space Network’s Canberra complex on March 19, 2025. That day marked 60 years since the Australian facility joined the network.NASA “As we look back on 60 years of incredible accomplishments at Canberra, the groundbreaking of a new antenna is a symbol for the next 60 years of scientific discovery,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) Program at NASA Headquarters in Washington. “Building cutting-edge antennas is also a symbol of how the Deep Space Network embraces new technologies to enable the exploration of a growing fleet of space missions.”
When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
Canberra’s Role
The Deep Space Network was officially founded on Dec. 24, 1963, when NASA’s early ground stations, including Goldstone, were connected to the new network control center at the agency’s Jet Propulsion Laboratory in Southern California. Called the Space Flight Operations Facility, that building remains the center through which data from the three global complexes flows.
The Madrid facility joined in 1964, and Canberra went online in 1965, going on to help support hundreds of missions, including the Apollo Moon landings.
Three eye-catching posters featuring the larger 230-foot (70-meter) antennas located at the three Deep Space Network complexes around the world.NASA/JPL-Caltech “Canberra has played a crucial part in tracking, communicating, and collecting data from some of the most momentous missions in space history,” said Kevin Ferguson, director of the Canberra Deep Space Communication Complex. “As the network continues to advance and grow, Canberra will continue to play a key role in supporting humanity’s exploration of the cosmos.”
By being spaced equidistant from one another around the globe, the complexes can provide continual coverage of spacecraft, no matter where they are in the solar system as Earth rotates. There is an exception, however: Due to Canberra’s location in the Southern Hemisphere, it is the only one that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
New Technologies
In addition to constructing more antennas like Canberra’s Deep Space Station 33, NASA is looking to the future by also experimenting with laser, or optical, communications to enable significantly more data to flow to and from Earth. The Deep Space Network currently relies on radio frequencies to communicate, but laser operates at a higher frequency, allowing more data to be transmitted.
As part of that effort, NASA is flying the laser-based Deep Space Optical Communications experiment with the agency’s Psyche mission. Since the October 2023 launch, it has demonstrated high data rates over record-breaking distances and downlinked ultra-high definition streaming video from deep space.
“These new technologies have the potential to boost the science and exploration returns of missions traveling throughout the solar system,” said Amy Smith, deputy project manager for the Deep Space Networkat JPL, which manages the network. “Laser and radio communications could even be combined to build hybrid antennas, or dishes that can communicate using both radio and optical frequencies at the same time. That could be a game changer for NASA.”
For more information about the Deep Space Network, visit:
https://www.nasa.gov/communicating-with-missions/dsn/
NASA’s New Deep Space Network Antenna Has Its Crowning Moment NASA’s New Experimental Antenna Tracks Deep Space Laser VIDEO: How Do We Know Where Faraway Spacecraft Are? News Media Contact
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
2024-048
Explore More
5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
Article 2 weeks ago Share
Details
Last Updated Apr 08, 2025 Related Terms
Deep Space Network Jet Propulsion Laboratory Explore More
5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Since joining NASA in 2017 as a contractor supporting the International Space Station, Caroline Cawthon has held many roles supporting real-time operations as a certified flight controller, team lead, and lead systems engineer.
Caroline Cawthon’s official NASA portrait. NASA is one of the biggest most impressive networks of engineering, science, and space program expertise in the world and to not leverage that experience in mentorship would be a waste.
Caroline Cawthon
CLDP Engineering and Integration Lead
Now, she is supporting America’s future in orbit as the systems engineering and integration lead for NASA’s Commercial Low Earth Orbit Development Program engineering technical authority. Cawthon supports the program’s chief engineer office. In this position, she plays a key role in the oversight of phase 1 partner requirements and processes as part of the program’s two-phase approach to support the development of commercial space stations.
Growing up in military and NASA communities, Cawthon was fascinated with aviation and aerospace from a young age and aspired to become a fighter pilot and engineer. She first met an astronaut while attending Space Camp at the Euro Space Center in Belgium, sparking her interest in human spaceflight and solidifying her goals to work for NASA, make an impact, and be a part of making history. She later earned her bachelor’s degree in chemical and materials engineering and her master’s degree in aeronautics and space systems.
Cawthon attending Space Camp as a child at the Euro Space Center in Belgium. Image courtesy of Caroline Cawthon Cawthon describes the best part of her day as the people she works with, and her passionate and mission-driven team reminds her that the mission she’s working toward will make a difference in the future of human spaceflight.
“Between the program, engineering team, and our industry partners, there are thousands of years of experience with human spaceflight that I get to leverage every day to learn and grow in my role and to help NASA accomplish our mission,” shared Cawthon.
A recent example of this mission-driven teamwork was the development of the program’s technical standards design evaluation document. As the lead for this task, Cawthon was proud of how everyone’s hard work and contributions came together.
The biggest lesson Cawthon has learned while working with NASA is to continue being curious, learning, and growing both personally and professionally.
“NASA is one of the biggest most impressive networks of engineering, science, and space program expertise in the world and to not leverage that experience in mentorship would be a waste,” Cawthon said.
Cawthon pictured with her husband and daughter. Image courtesy of Caroline Cawthon Outside of work, Cawthon enjoys spending time outdoors with her husband and daughter. She and her family also like to be on the road, exploring new places and meeting new people. They enjoy international travel and small weekend adventures like the local zoo and aquarium.
Learn more about NASA’s Commercial Low Earth Orbit Development Program at:
Commercial Space Stations
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.