Members Can Post Anonymously On This Site
Letter exposes top-secret reverse engineering UFO programs involving the Five Eyes Alliance
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ESI24 Chang Quadchart
Chih-Hao Chang
University of Texas at Austin
Establishing a permanent base on the moon is a critical step in the exploration of deep space. One significant challenge observed during the Apollo missions was the adhesion of lunar dust, which can build up on vehicle, equipment, and space suit. Highly fine and abrasive, the dust particles can have adverse mechanical, electrical, and health effects. The proposed research aims to develop a new class of hierarchical, heterogenous nanostructured coating that can passively mitigate adhesion of lunar particles. Using scalable nanolithography and surface modification processes, the geometry and material composition of the nanostructured surface will be precisely engineered to mitigate dust adhesion. This goal will be accomplished by: (1) construct multi-physical models to predict the contributions of various particle adhesion mechanisms, (2) develop scalable nanofabrication processes to enable precise control of hierarchical structures, and (3) develop nanoscale single-probe characterization protocols to characterize adhesion forces in relevant space environments. The proposed approach is compatible with roll-to-roll processing and the dust-mitigation coating can be transfer printed on arbitrary metal, ceramic, and polymer surfaces such as space suits, windows, mechanical machinery, solar panels, and sensor systems that are vital for long-term space exploration.
Back to ESI 2024
Keep Exploring Discover More Topics From STRG
Space Technology Mission Directorate
STMD Solicitations and Opportunities
Space Technology Research Grants
About STRG
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
In Punakha, Bhutan, Dr. Aparna Phalke (left) from SERVIR works with a translator to converse with a local chili farmer (center) about his experiences cultivating these fields for over 30 years– including agricultural management practices, market prices, and farming challenges Sarah Cox/SERVIR NASA and the Kingdom of Bhutan have been actively learning from each other and growing together since 2019. The seeds planted over those years have ripened into improved environmental conservation, community-based natural resource management, and new remote sensing tools.
Known for its governing philosophy of “gross national happiness,” and has a constitutional mandate to maintain at least 60% forest cover. The government’s goals include achieving nationwide food security by 2030.
Bhutan first approached the U.S. State Department to partner on science, technology, engineering, and mathematics (STEM) opportunities for the country, and NASA was invited to help lead these opportunities. In 2019, Bhutan’s King Jigme Khesar Namgyel Wangchuck visited NASA’s Ames Research Center in Silicon Valley, California, and was introduced to several NASA programs.
NASA’s Earth scientists and research staff from several complementary programs have helped support Bhutan’s goals by providing data resources and training to make satellite data more useful to communities and decision makers. Bhutan now uses NASA satellite data in its national land management decisions and plans to foster more geospatial jobs to help address environmental issues.
Supporting Bhutan’s Environmental Decision Makers
Bhutan’s National Land Commission offers tax breaks to farmers to support food security and economic resilience. However, finding and reaching eligible farmers on the ground can be expensive and time consuming, which means small farmers in remote areas can be missed.
A team from SERVIR – a joint NASA-U.S. Agency for International Development initiative – worked with Bhutanese experts to create decision-making tools like the Farm Action Toolkit (FAcT). The tool uses imagery from the NASA-U.S. Geological Survey Landsat satellites to identify and measure the country’s farmland. SERVIR researchers met with agricultural organizations – including Bhutan’s Ministry of Agriculture and Livestock, National Statistics Bureau, and National Center for Organic Agriculture – to adjust the tool for the country’s unique geography and farming practices. The Land Commission now uses FAcT to identify small farms and bring support to more of the country.
NASA also develops local capacity to use Earth data through efforts like the Applied Remote Sensing Training Program (ARSET). In early 2024, ARSET staff worked with SERVIR and Druk Holdings and Investments (DHI) to host a workshop with 46 Bhutanese government personnel. Using tailored local case studies, the teams worked to find ways to better manage natural resources, assist land use planning, and monitor disasters.
“We look forward to continuing this collaboration, as there are still many areas where NASA’s expertise can significantly impact Bhutan’s development goals,” said Manish Rai, an analyst with DHI who helped coordinate the workshop. “This collaboration is a two-way street. While Bhutan has benefited greatly from NASA’s support, we believe there are also unique insights and experiences that Bhutan can share with NASA, particularly in areas like environmental conservation and community-based natural resource management.”
Dr. Aparna Phalke gives a presentation on NASA technology and the SERVIR program to a group of 100 students at the Royal University of Bhutan College of Natural Resources. Sarah Cox/SERVIR Encouraging Bhutan’s Future Environmental Leaders
By working with students and educators from primary schools to the university level, Bhutan and NASA have been investing in the country’s future environmental leadership. Supporting educators and “training trainers” have been pillars of this collaboration.
NASA and Bhutan have worked together to boost the skills of early-career Earth scientists. For example, NASA’s DEVELOP program for undergraduates worked directly with local institutions to create several applied science internships for Bhutanese students studying in the U.S.
Tenzin Wangmo, a high school biology teacher in Bhutan, participated in DEVELOP projects focusing on agriculture and water resources. According to Wangmo, the lessons learned from those projects have been helpful in connecting with her students about STEM opportunities and environmental issues. “Most people only think of NASA as going to space, rather than Earth science,” she said. “It was encouraging to my students that there are lots of opportunities for you if you try.”
NASA is also supporting Bhutan’s future environmental leadership through the GLOBE (Global Learning and Observations to Benefit the Environment) Program. The GLOBE program is a U.S. interagency outreach program that works with teachers to support STEM literacy through hands-on environmental learning. Since 2020, GLOBE has worked through the U.S. State Department and organizations like the Ugyen Wangchuck Institute for Forest Research and Training to support educators at two dozen schools in Bhutan. The program reached more than 650 students with activities like estimating their school’s carbon footprint.
This focus on STEM education enables students and professionals to contribute to Bhutan’s specific development goals now and in the future.
Sonam Tshering, a student who completed two DEVELOP projects on Bhutanese agriculture while studying at the University of Texas at El Paso, was able to share the value of these efforts at the 2023 United Nations Climate Conference. “By applying satellite data from NASA, we aimed to create actionable insights for our local farmers and our policymakers back in Bhutan,” she said.
News Media Contact
Lane Figueroa
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated Nov 04, 2024 Related Terms
SERVIR (Regional Visualization and Monitoring System) Earth Earth Science Earth Science Division Marshall Science Research & Projects Marshall Space Flight Center Explore More
2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow
In August, the Association for Advancing Participatory Sciences (AAPS) announced a fellowship opportunity in partnership…
Article 4 hours ago 4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami
Article 4 days ago 23 min read The Marshall Star for October 30, 2024
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair
This observation combines mid-infrared light from NASA’s James Webb Space Telescope, and ultraviolet and visible light from NASA’s Hubble Space Telescope. The galaxies grazed one another millions of years ago. The smaller spiral on the left, cataloged as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Credits:
NASA, ESA, CSA, STScI Stare deeply at these galaxies. They appear as if blood is pumping through the top of a flesh-free face. The long, ghastly “stare” of their searing eye-like cores shines out into the supreme cosmic darkness.
It’s good fortune that looks can be deceiving.
These galaxies have only grazed one another to date, with the smaller spiral on the left, cataloged as IC 2163, ever so slowly “creeping” behind NGC 2207, the spiral galaxy at right, millions of years ago.
The pair’s macabre colors represent a combination of mid-infrared light from NASA’s James Webb Space Telescope with visible and ultraviolet light from NASA’s Hubble Space Telescope.
Image A: Galaxies IC 2163 and NGC 2207 (Webb and Hubble Image)
This observation combines mid-infrared light from NASA’s James Webb Space Telescope, and ultraviolet and visible light from NASA’s Hubble Space Telescope. The galaxies grazed one another millions of years ago. The smaller spiral on the left, cataloged as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. NASA, ESA, CSA, STScI Look for potential evidence of their “light scrape” in the shock fronts, where material from the galaxies may have slammed together. These lines represented in brighter red, including the “eyelids,” may cause the appearance of the galaxies’ bulging, vein-like arms.
The galaxies’ first pass may have also distorted their delicately curved arms, pulling out tidal extensions in several places. The diffuse, tiny spiral arms between IC 2163’s core and its far left arm may be an example of this activity. Even more tendrils look like they’re hanging between the galaxies’ cores. Another extension “drifts” off the top of the larger galaxy, forming a thin, semi-transparent arm that practically runs off screen.
Image B: Galaxies IC 2163 and NGC 2207 (MIRI Image)
This mid-infrared image from NASA’s James Webb Space Telescope excels at showing where the cold dust, set off in white, glows throughout these two galaxies, IC 2163 and NGC 2207. The telescope also helps pinpoint where stars and star clusters are buried within the dust. These regions are bright pink. Some of the pink dots may be extremely distant active supermassive black holes known as quasars. NASA, ESA, CSA, STScI Both galaxies have high star formation rates, like innumerable individual hearts fluttering all across their arms. Each year, the galaxies produce the equivalent of two dozen new stars that are the size of the Sun. Our Milky Way galaxy only forms the equivalent of two or three new Sun-like stars per year. Both galaxies have also hosted seven known supernovae in recent decades, a high number compared to an average of one every 50 years in the Milky Way. Each supernova may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form.
To spot the star-forming “action sequences,” look for the bright blue areas captured by Hubble in ultraviolet light, and pink and white regions detailed mainly by Webb’s mid-infrared data. Larger areas of stars are known as super star clusters. Look for examples of these in the top-most spiral arm that wraps above the larger galaxy and points left. Other bright regions in the galaxies are mini starbursts — locations where many stars form in quick succession. Additionally, the top and bottom “eyelid” of IC 2163, the smaller galaxy on the left, is filled with newer star formation and burns brightly.
Image C: Galaxies IC 2163 and NGC 2207 (Hubble and Webb Images Side by Side)
Image Before/After What’s next for these spirals? Over many millions of years, the galaxies may swing by one another repeatedly. It’s possible that their cores and arms will meld, leaving behind completely reshaped arms, and an even brighter, cyclops-like “eye” at the core. Star formation will also slow down once their stores of gas and dust deplete, and the scene will calm.
Video A: Tour of Galaxies IC 2163 and NGC 2207
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov, Claire Andreoli – claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Claire Blome – cblome@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Other images: View of NGC 2207 in optical, x-ray, and infrared light
Video: What happens when galaxies collide?
Video: Galaxy Collisions: Simulations vs. Observations
Article: More about Galaxy Evolution
Video: Learn more about galactic collisions
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Hubble Mission Page
Related For Kids
What is a galaxy?
What is the Webb Telescope?
The Amazing Hubble Telescope
SpacePlace for Kids
En Español
¿Qué es una galaxia?
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble vs. Webb
Galaxies
Share
Details
Last Updated Oct 30, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Galaxies Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Science & Research Spiral Galaxies The Universe View the full article
-
By NASA
10 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Editor’s note: This article was published May 23, 2003, in NASA Armstrong’s X-Press newsletter. NASA’s Dryden Flight Research Center in Edwards, California, was redesignated Armstrong Flight Research Center on March 1, 2014. Ken Iliff was inducted into the National Hall of Fame for Persons with Disabilities in 1987. He died Jan. 4, 2016.
Alphonso Stewart, from left, Ken Iliff, and Dale Reed study lifting body aircraft models at NASA’s Armstrong (then Dryden) Flight Research Center in Edwards, California.NASA As an Iowa State University engineering student in the early 1960s, Ken Iliff was hard at work on a glider flight simulation.
Upon examining the final results – which, in those early days of the computer revolution, were viewed on a long paper printout – he noticed one glaring imperfection: the way he had programmed it, his doomed glider would determinedly accelerate as it headed for the ground.
The culprit was a single keystroke. At the time, programming was based on data that had been painstakingly entered into the computer by hand, on punch cards and piece by piece. Somewhere, Iliff had entered a plus sign instead of a minus sign.
The seemingly minor incident was to foreshadow great things to come in Iliff’s career.
Not long after graduation, the West Union, Iowa, native found himself at what was then called simply the NASA Flight Research Center located on Edwards Air Force Base.
“I just knew I didn’t want to be sitting somewhere in a big room full of engineers who were all doing the same thing,” Iliff said of choosing Dryden over other jobs and other NASA centers. “It was a small center doing important things, and it was in California. I knew I wanted to be there.”
Once at Dryden, the issue of data tidbits was central to the new hire’s workday. Iliff’s post called for him and many of his colleagues to spend much of their time “reading up” data – a laborious process of measuring data from film using a single reference line and a ruler. Measurements were made every tenth of a second; for a ten-second maneuver, a total of one hundred “traces” were taken for every quantity being recorded.
“I watched talented people spending entire days analyzing data,” he recalled. “And then, maybe two people would arrive at two entirely different conclusions” from the same data sets.
As has happened so often at the birth of revolutionary ideas, then, one day Iliff had a single, simple thought about the time-intensive and maddeningly inexact data analysis process:
“There just has to be a better way to do this.”
The remedy he devised was to result in a sea change at Dryden, and would reverberate throughout the world of computer-based scientific research.
Iliff’s work spanned the decades that encompassed some of Dryden’s greatest achievements, from the X-15 through the XB-70 and the tentative beginnings of the shuttle program. The solution he created to the problem of inaccuracy in data analysis focused on aerodynamic performance – how to formulate questions about an aircraft’s performance once answers about it are already known, how to determine the “why?” when the “what happens?” has already happened.
The work is known as “parameter estimation,” and is used in aerospace applications to extract precise definitions of aerodynamic, structural and performance parameters from flight data.
His methodology – cemented in computer coding Iliff developed using Fortran’s lumbering binary forerunner, machine code – allowed researchers to determine precisely the type of information previously derived only as best-estimate guesses through analysis of data collected in wind tunnels and other flight-condition simulators. In addition to aerospace science, parameter estimation is also used today in a wide array of research applications, including those involving submarines, economic models, and biomedicine.
With characteristic deference, Iliff now brushes off any suggestion of his discovery’s significance. Instead, he credits other factors for his successes, such as a Midwestern work ethic and Iowa State University’s early commitment to giving its engineering students good access to the new and emerging computer technology.
To hear him tell it, “all good engineers are a little bit lazy. We know how to innovate – how to find an easier way.
“I’d been trained well, and given the right tools – I was just in the right place at the right time.”
But however modestly he might choose to see it characterized, it’s fair to number Iliff’s among the longest and most distinguished careers to take root in the ranks of Dryden research engineers. Though his groundbreaking work will live forever in research science, when Iliff retired in December he brought to a close his official role in some of the most important chapters in Dryden history.
Ken Iliff worked for four decades on revolutionary aircraft and spacecraft, including the X-29 forward swept wing aircraft behind him, at NASA’s Armstrong (then Dryden) Flight Research Center in Edwards, California.NASA His pioneering work with parameter estimation carried through years of aerodynamic assessment and data analysis involving lifting-body and wing-body aircraft, from the X-15 through the M2-F1, M2-F2 and M2-F3 projects, the HL-10, the X-24B and NASA’s entire fleet of space shuttles. His contributions aided in flight research on the forward-swept-wing X-29 and the F/A-18 High Angle of Attack program, on F-15 spin research vehicles, on thrust vectoring and supermaneuverability.
Iliff began work on the space shuttle program when it was little more than a speculative “what’s next?” chapter in manned spaceflight, long before it reached officially sanctioned program status. Together with a group spearheaded by the late NASA research pilot and long-time Dryden Chief Engineer Milt Thompson – who Iliff describes unflinchingly as “my hero” – Iliff helped explore the vast range of possibilities for a new orbiting craft that would push NASA to its next frontier after landing on the moon.
In an environment much more informal than today’s, when there were few designations of “program manager” or “task monitor” or “deputy director” among NASA engineers like Iliff and Thompson, a handful of creative, disciplined minds were at work dreaming up a reusable aircraft that would launch, orbit the Earth and return. Iliff’s role was to offer up the rigor of comparison in size, speed and performance among potential aircraft designs; Thompson and Iliff’s group was responsible, for example, for the decision to abandon the notion of jet engines on the orbiter, decreeing them too heavy, too risky and too inefficient.
Month in and month out, Iliff and his colleagues painstakingly researched and developed the myriad design details that eventually materialized into the shuttle fleet. There was, in Iliff’s words, “a love affair between the shuttle and the engineers.”
And in a display typifying the charged environment of creative collaboration that governed the effort – an effort many observe wryly that it would be difficult to replicate at NASA, today or anytime – the body of research was compiled into the now-legendary aero-data book, a living document that records in minute detail every scrap of design and performance data recorded about the shuttles’ flight activity.
Usually with more than a touch of irony, the compiling of the aero-data book has been described with phrases like “a remarkably democratic process,” involving as it did the need for a hundred independent minds and strong personalities to agree on indisputable facts about heat, air flow, turbulence, drag, stability and a dozen other aerodynamic principles. But Iliff says the success of the mammoth project, last updated in 1996, was ultimately enabled by a shared commitment to a culture that was unique to Dryden, one that made the Center great.
“Well, big, complicated things don’t always come out like you think they will,” Iliff said.
“But we understood completely the idea of ‘informed risk.’ We had a thorough understanding of risks before taking them – nobody ever did anything on the shuttle that they thought was dangerous, or likely to fail.
“The truly great thing (about that era at Dryden) was that they mentored us, and let us take those risks, and helped us get good right away. That was how we were able to do what we did.”
It was an era that Iliff says he was thrilled to be a part of, and which he admits was difficult to leave. It was also, he adds with a note of uncharacteristic nostalgia, a time that would be hard to reinvent today after the intrusion of so many bureaucratic tentacles into the hot zone that spawned Dryden’s greatest achievements.
A man not much given to dwelling on the past, however, Iliff has moved on to a retirement he is making the most of. Together with his wife, Mary Shafer, also retired from her career as a Dryden engineer, he plans to dedicate time to cataloging the couple’s extensive travel experiences with new video and graphics software, and adding to the travel library with footage from new trips. Iraq ranks high on the short list.
During his 40-year tenure, Iliff held the post of senior staff scientist of Dryden’s research division from 1988 to 1994, when he became the Center’s chief scientist. Among numerous awards he received were the prestigious Kelly Johnson Award from the Society of Flight Test Engineers (1989), an award permanently housed in the Smithsonian National Air and Space Museum, and NASA’s highest scientific honor, the NASA Exceptional Scientific Achievement Award (1976).
He was inducted into the National Hall of Fame for Persons with Disabilities in 1987, and served on many national aeronautic and aerospace committees throughout his career. He is a Fellow in the American Institute of Aeronautics and Astronautics (AIAA) and is the author of more than 100 technical papers and reports. He has given eleven invited lectures for NATO and AGARD (Advisory Group for Aerospace Research and Development), and served on four international panels as an expert in aircraft and spacecraft dynamics. Recently, he retired from his position as an adjunct professor of electrical engineering at the University of California, Los Angeles.
Iliff holds dual bachelor of science degrees in mathematics and aerospace engineering from Iowa State University; a master of science in mechanical engineering from the University of Southern California; a master of engineering degree in engineering management and a Ph.D. in electrical engineering, both from UCLA.
Iliff’s is the kind of legacy shared by a select group of American engineers, and to read the papers these days, there’s the suggestion that his is a vanishing breed. NASA and other science-based organizations are often depicted as scrambling for new engineering talent – particularly of the sort personified by Iliff and his pioneering achievements.
But, typical of the visionary approach he applies to life in general as well as to science, Iliff takes a wider view.
“I remember, after the X-1 – people figured all the good things had been done,” he said, with a smile in his voice. “And of course, they had not.
“If I was starting out now, I’d be starting in work with DNA, or biomedicine – improving lives with drug research. There are so many exciting things to be discovered there. They might not be as showy as lighting off a rocket, but they’re there.
“I’ve seen cycles. We’re at a low spot right now – but military, or space, will eventually be at the center again.”
And when that day comes, Iliff says he hopes officials in the flight research world will heed the example of Dryden’s early years, and give its engineers every opportunity to succeed unfettered – as he had been.
“Beware the ‘Chicken Littles’ out there,” he said. “I hope the government will be strong enough to resist them.”
Sarah Merlin
Former X-Press newsletter assistant editor
Former Dryden historian Curtis Peebles contributed to this article.
Share
Details
Last Updated Oct 29, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center People of Armstrong People of NASA Explore More
5 min read Carissa Arillo: Testing Spacecraft, Penning the Owner’s Manuals
Article 2 hours ago 4 min read NASA Group Amplifies Voices of Employees with Disabilities
Article 6 hours ago 4 min read Destacado de la NASA: Felipe Valdez, un ingeniero inspirador
Article 4 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Research & Engineering
Armstrong Technologies
Armstrong People
View the full article
-
By NASA
A mentor of research scientist Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” Kacenelenbogen pushes beyond her comfort zone to explore the unknown.
Name: Meloë S. Kacenelenbogen
Formal Job Classification: Research scientist
Organization: Climate and Radiation Laboratory, Science Directorate (Code 613)
Dr. Meloë S. Kacenelenbogen is a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She studies the impact of aerosols on air quality and the Earth’s climate.Photo courtesy of Meloë Kacenelenbogen What do you do and what is most interesting about your role here at Goddard?
I study the impact of aerosols — suspended particles from, for example, wildfire smoke, desert dust, urban pollution, and volcanic eruptions — on air quality and the Earth’s climate. I use space, air, and ground-based observations, as well as models.
Why did you become a scientist? What is your educational background?
I never made a deliberate choice to become a scientist. I started with very little confidence as a child and then built up my confidence by achieving things I thought I could not do. I chose the hardest fields to work on along the way. Science looked hard and so did fluid mechanics, remote sensing, and atmospheric physics. I have failed many times, but I always learn something and move on. I do get scared and maybe even paralyzed for a day or two, but I never let fear or failure immobilize me for long.
I was born in Maryland, but my family moved to France when I was young, so I am fluent in French. I have a bachelor’s and master’s degree in mechanical engineering, and physical methods in remote sensing from the Université Pierre et Marie Curie (Paris VI, Jussieu). In 2008, I got a Ph.D. in atmospheric physics for applying satellite remote sensing to air quality at the Université des Sciences et Technologies de Lille (USTL), France.
What are some of your career highlights?
After my Ph.D., I worked for the Atmospheric Lidar Group at the University of Maryland, Baltimore County (UMBC), on spaceborne and ground-based lidars. In 2009, I got a NASA Post-doctoral Program (NPP) fellowship at the agency’s Ames Research Center in California’s Silicon Valley, where I worked for 13 years on space-based, aircraft-based, and ground-based atmospheric aerosol vertical distribution and aerosol typing.
In 2022, I came to work at the Climate and Radiation Lab at Goddard.
What is most interesting about aerosols?
Aerosols are very topical because they have a huge impact on the air we breathe and our Earth’s climate. The smaller the aerosol, the deeper it can get into our lungs. Among other sources, aerosols can come from cars, factories, or wildfires. We all know that wildfires are becoming bigger and more frequent. They are expected to happen even more frequently in the future due to climate change. Both when I was living in California and here in Maryland, I have experienced first-hand choking from the wildfire smoke. I will always remember how apocalyptic it felt back in the summer of 2020 in California when wildfire smoke was paired with COVID confinement, and the sky turned Mars-like orange.
Please tell us about your involvement with the Atmosphere Observing System (AOS)?
I am incredibly lucky to be able to contribute to the next generation of NASA’s satellites. I am working on AOS, which will observe aerosols, clouds, convention, and precipitation in the Earth’s atmosphere. I am part of the team that is helping design several instruments and algorithms.
My role is to connect this spaceborne observing system to all our other space, ground, and air-based measurements at the time of launch. We are making a mesh of observations to address the science questions, run the algorithms, and validate the spaceborne measurements. I am constantly pushed to expand my horizon and my own knowledge.
Why do you enjoy always challenging yourself intellectually?
I started that way. I had no confidence, so I felt that the only way I could build my confidence was to try doing things that scared me. I may sometimes be a little scared, but I am never bored.
What did you learn from your mentors?
A few years ago, a mentor shared a quote from André Gide with me that encapsulates what we are talking about: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” In other words, it is OK, maybe preferable, to be out of my comfort zone to explore the unknown as scary as it may be.
Along the way, it has been extremely important for me to deliberately choose mentors. To me, a good mentor has earned the respect of all who have worked with them, is uplifting, reassuring, and gives me the invaluable guidance and support that I need. I deliberately try to surround myself with the right people. I have been very, very fortunate to find incredible people to encourage me.
As a mentor, what do you advise?
I tell them to deliberately choose their mentors. I also tell them that it is OK to be uncomfortable. Being uncomfortable is the nature of our field. To do great things, we often need to be uncomfortable.
Why do you enjoy working on a team?
I love working on teams, I love to feed off the positive energy of a team whether I lead it or am part of it. In my field, teamwork with a positive energy is incredibly satisfying. Everybody feeds off everybody’s energy, we go further, are stronger, and achieve more. This may not happen often, but when it does it makes it all worth it.
What are the happiest moments in your career?
I am always happiest when the team publishes a paper and all our efforts, are encapsulated in that one well-wrapped and satisfying peer-reviewed paper that is then accessible to everyone online. Every paper we publish feels, to me, the same as a Ph.D. in terms of the work, pain, energy, and then, finally, satisfaction involved.
What do you hope to achieve in your career?
I want to have been a major contributor to the mission by the time the AOS satellites launch.
What do you do for fun?
I do mixed martial arts. I love the ocean, diving, and sailing. I also love going to art galleries, especially to see impressionist paintings to reconnect with my Parisian past.
Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.”Photo courtesy of Meloë Kacenelenbogen Who is your favorite author?
I love Zweig, Kafka, Dostoyevsky, Saint-Exupéry, and Kessel. The latter two wrote a lot about aviators in the early 1900s back in the days when it was new and very dangerous. Those pilots, like Mermoz, were my heroes growing up.
Who would you like to thank?
I would like to thank my family for being my rock.
What are your guiding principles?
To paraphrase Dostoevsky, everyone is responsible to all men for all men and for everything. I have a strong sense of purpose, pride, justice, and honor. This is how I try to live my life for better or for worse.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Explore More
6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 6 days ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
Article 2 weeks ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’
Article 3 weeks ago Share
Details
Last Updated Oct 22, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard Goddard Space Flight Center People of NASA View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.