Jump to content

The Zero Debris Charter


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Zero Debris Charter goes intercontinental View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Starfish Space has been awarded SBIR Phase III funding for a mission to inspect defunct satellites to increase opportunities to mitigate space debris. An artist’s concept image shows the company’s Otter spacecraft, which is capable of inspecting and deorbiting defunct spacecraft, in orbit.Starfish Space NASA is advancing an innovative approach to enabling commercial inspection of defunct, or inoperable, satellites in low Earth orbit, a precursor to capturing and repairing or removing the satellites.
      The agency has awarded Starfish Space of Seattle, Washington, a Phase III Small Business Innovation Research (SBIR) contract to complete the Small Spacecraft Propulsion and Inspection Capability (SSPICY) mission. The award follows a Phase III study, which funded four U.S. small businesses including Starfish to develop mission concepts. Starfish Space will receive $15 million over three years to execute the mission.
      The ability to inspect defunct spacecraft and identify opportunities for repair or deorbiting is critical to maintaining a safe orbital environment for spacecraft and humans. Orbital debris mitigation is a key component of NASA’s Space Sustainability Strategy.
      “The SSPICY mission is designed to mature technologies needed for U.S. commercial capabilities for satellite servicing and logistics or disposal,” said Bo Naasz, senior technical lead for in-space servicing, manufacturing, and assembly in NASA’s Space Technology Mission Directorate. “In-space inspection helps us characterize the physical state of a satellite, gather data on what may leave spacecraft stranded, and improve our understanding of fragmentations and collisions, a difficult but critical factor in a sustainable space operating environment.”
      The Starfish-led mission uses the company’s Otter spacecraft, a small satellite about the size of an oven, which is designed to inspect, dock with, and service or deorbit other satellites. Otter’s electric propulsion system will not only help it efficiently travel to multiple satellites, but the SSPICY demonstration also will mature the spacecraft’s ability to perform inspections using electric propulsion, an important enabling technology not typically used for rendezvous and proximity operations.
      During the SSPICY mission, Otter will visit and inspect multiple U.S. owned defunct satellites that have agreed to be visited and inspected – a delicate and challenging task, as satellites move quickly and are kept far apart from each other for safety. Otter will approach within hundreds of meters of each satellite to conduct inspections during mission operations. During the inspection, Otter will gather key information about each of the debris objects including their spin rate, spin axes, and current conditions of the objects’ surface materials.
      The SSPICY mission is the first commercial space debris inspection funded by NASA and supports the agency’s efforts to extend the life of satellites while reducing space debris. Satellites that are no longer in use can break apart or collide with one another, creating debris clouds that pose risk to human spaceflight, science and robotic missions in Earth’s orbit, and missions to other planets in the solar system. Data from inspections like those planned during the SSPICY demonstration will play a critical role in understanding the nature of defunct satellites and advancing solutions for reuse or disposal.
      “We are excited to expand our partnership with NASA, building on our shared commitment to advancing in-space manufacturing and assembly capabilities,” said Trevor Bennett, co-founder of Starfish Space. “It’s an honor for Starfish to lead the first commercial debris inspection mission funded by NASA. We look forward to collaborating on this and future satellite servicing missions to enable a new paradigm for humanity in space.”
      The Otter spacecraft is expected to launch in late 2026 and will begin performing inspections in 2027.
      The SSPICY demonstration is funded and managed by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley. The award is enabled by NASA’s SBIR program, which is open to U.S. small businesses to develop an innovation or technology. These programs are part of NASA’s Space Technology Mission Directorate.
      Learn more at:
      https://www.nasa.gov/space-technology-mission-directorate
      Share
      Details
      Last Updated Sep 25, 2024 Related Terms
      Ames Research Center Small Business Innovation Research / Small Business Small Satellite Missions Small Spacecraft Technology Program Space Sustainability Space Technology Mission Directorate Explore More
      3 min read NASA’s Record-Breaking Laser Demo Completes Mission
      Article 5 hours ago 4 min read ­­Robotic Moving ‘Crew’ Preps for Work on Moon 
      Article 7 hours ago 4 min read NASA Expands Small Business, Industry Engagement Resources
      Article 2 days ago Keep Exploring Discover Related Topics
      About Ames
      Space Technology Mission Directorate
      Ames Research Center SBIR/STTR Program Office 
      NASA’s Space Sustainability Strategy
      View the full article
    • By European Space Agency
      In 2022 NASA’s DART spacecraft made history, and changed the Solar System forever, by impacting the Dimorphos asteroid and measurably shifting its orbit around the larger Didymos asteroid. In the process a plume of debris was thrown out into space.
      The latest modelling, available on the preprint server arXiv and accepted for publication in the September volume of The Planetary Science Journal, shows how small meteoroids from that debris could eventually reach both Mars and Earth – potentially in an observable (although quite safe) manner.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Johnson Space Center: ORDEM represents the state of the art in orbital debris models intended for engineering analysis. It is a data-driven model, relying on large quantities of radar, optical, in situ, and laboratory measurement data. When released, it was the first software code to include a model for different orbital debris material densities, population models from low Earth orbit (LEO) all the way to Geosynchronous orbit (GEO), and uncertainties in each debris population. 
      ORDEM allows users to compute the orbital debris flux on any satellite in Earth orbit.  This allows satellite designers to mitigate possible orbital debris damage to a spacecraft and its instruments using shielding and design choices, thereby extending the useful life of the mission and its experiments.  The model also has a mode that simulates debris telescope/radar observations from the ground.  Both it and the spacecraft flux mode can be used to design experiments to measure the meteoroid and orbital debris environments. 
      ORDEM is used heavily in the hypervelocity protection community, those that design, build, and test shielding for spacecraft and rocket upper stages. The fidelity of the ORDEM model allows for the optimization of shielding to balance mission success criteria, risk posture, and cost considerations. 
      As both government and civilian actors continue to exploit the space environment for security, science, and the economy, it is important that we track the debris risks in increasingly crowded orbits, in order to minimize damage to these space assets to make sure these missions continue to operate safely.  ORDEM is NASA’s primary tool for computing and mitigating these risks.   
      ORDEM is used by NASA, the Department of Defense, and other U.S. government agencies, directly or indirectly (via the Debris Assessment Software, MSC-26690-1) to evaluate collision risk for large trackable objects, as well as other mission-ending risks associated with small debris (such as tank ruptures or wiring cuts). In addition to the use as an engineering tool, ORDEM has been used by NASA and other missions in the conceptual design phase to analyze the frequency of orbital debris impacts on potential in situ sensors that could detect debris too small to be detected from ground-based assets. 
      Commercial and academic users of ORDEM include Boeing, SpaceX, Northrop Grumman, the University of Colorado, California Polytechnic State University, among many others. These end users, similar to the government users discussed above, use the software to (1) directly determine potential hazards to spaceflight resulting from flying through the debris environment, and (2) research how the debris environment varies over time to better understand what behaviors may be able to mitigate the growth of the environment. 
      The quality and quantity of data available to the NASA Orbital Debris Program Office (ODPO) for the building, verification, and validation of the ORDEM model is greater than for any other entity that performs similar research. Many of the models used by other research and engineering organizations are derived from the models that ODPO has published after developing them for use in ORDEM.   
      ORDEM Team 
      Alyssa Manis  Andrew B, Vavrin  Brent A. Buckalew  Christopher L. Ostrom   Heather Cowardin  Jer-chyi Liou   John H, Seago   John Nicolaus Opiela   Mark J. Matney, Ph.D.  Matthew Horstman   Phillip D. Anz-Meador, Ph.D.  Quanette Juarez   Paula H. Krisko, Ph.D.  Yu-Lin Xu, Ph.D.  Share
      Details
      Last Updated Jul 31, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      3 Min Read NASA Sponsors New Research on Orbital Debris, Lunar Sustainability
      From lunar orbit, astronauts pointed cameras out the window of their spacecraft to capture photos of the moon's surface. Credits: NASA As part of NASA’s commitment to foster responsible exploration of the universe for the benefit of humanity, the Office of Technology, Policy, and Strategy (OTPS) is funding space sustainability research proposals from five university-based teams to analyze critical economic, social, and policy issues related to Earth’s orbit and cislunar space.
      The new research awards reflect the agency’s commitment identified in NASA’s Space Sustainability Strategy to ensure safe, peaceful, and responsible space exploration for future generations, and encourage sustainable behaviors in cislunar space and on the lunar surface by ensuring that current operations do not impact those yet to come.
      Three of the five awards will fund research that addresses the growing problem of orbital debris, human-made objects in Earth’s orbit that no longer serve a purpose. This debris can endanger spacecraft, jeopardize access to space, and impede the development of a low-Earth orbit economy. 
      The remaining two awards focus on lunar surface sustainability and will address key policy questions such as the protection of valuable locations and human heritage sites as well as other technical, economic, or cultural considerations that may factor into mission planning. 
      “The sustainable use of space is critical to current and future space exploration,” said Ellen Gertsen, deputy associate administrator for the Office of Technology, Policy, and Strategy (OTPS) at NASA Headquarters in Washington. “Mitigating the risks of orbital debris and ensuring future generations can utilize the lunar surface are of paramount importance. These awards will fund research to help us understand the economics, the policy considerations, and the social elements of sustainability, generating new tools and evidence so we can make better-informed decisions.” 
      A panel of NASA experts selected the following proposals, awarding a total of about $550,000 to fund them: 
      Lunar surface sustainability 
      “A RAD Framework for the Moon: Applying Resist-Accept-Direct Decision-Making,” submitted by Dr. Caitlin Ahrens of the University of Maryland, College Park  “Synthesizing Frameworks of Sustainability for Futures on the Moon,” submitted by research scientist Afreen Siddiqi of Massachusetts Institute of Technology  Orbital Debris and Space Sustainability 
      “Integrated Economic-Debris Modeling of Active Debris Removal to Inform Space Sustainability and Policy,” submitted by researcher Mark Moretto of the University of Colorado, Boulder  “Avoiding the Kessler Syndrome Through Policy Intervention,” submitted by aeronautics and astronautics researcher Richard Linares of the Massachusetts Institute of Technology  “Analysis of Cislunar Space Environment Scenarios, Enabling Deterrence and Incentive-Based Policy,” submitted by mechanical and aerospace engineering researcher Ryne Beeson of Princeton University  Share
      Details
      Last Updated Jul 23, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
  • Check out these Videos

×
×
  • Create New...