Members Can Post Anonymously On This Site
Ambassador Andreas for WILD Nature Foundation
-
Similar Topics
-
By European Space Agency
The NASA/ESA/CSA James Webb Space Telescope has captured a beautiful juxtaposition of the nearby protostellar outflow known as Herbig-Haro 49/50 with a perfectly positioned, more distant spiral galaxy. Due to the close proximity of this Herbig-Haro object to Earth, this new composite infrared image of the outflow from a young star allows researchers to examine details on small spatial scales like never before. With Webb, we can better understand how the jet activity associated with the formation of young stars can affect the environment surrounding them.
View the full article
-
By NASA
Explore This SectionWebb NewsLatest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) OverviewAbout Who is James Webb? Fact Sheet Impacts+Benefits FAQ ScienceOverview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds ObservatoryOverview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module MultimediaAbout Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications TeamInternational Team People Of Webb MoreFor the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Telescope Unmasks True Nature of the Cosmic Tornado
NASA’s James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light. Credits: NASA, ESA, CSA, STScI Craving an ice cream sundae with a cherry on top? This random alignment of Herbig-Haro 49/50 — a frothy-looking outflow from a nearby protostar — with a multi-hued spiral galaxy may do the trick. This new composite image combining observations from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) provides a high-resolution view to explore the exquisite details of this bubbling activity.
Herbig-Haro objects are outflows produced by jets launched from a nearby, forming star. The outflows, which can extend for light-years, plow into a denser region of material. This creates shock waves, heating the material to higher temperatures. The material then cools by emitting light at visible and infrared wavelengths.
Image A:
Herbig-Haro 49/50 (NIRCam and MIRI Image)
NASA’s James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. Like the wake of a speeding boat, the bow shocks in this image have an arc-like appearance as the fast-moving jet from the young star slams into the surrounding dust and gas. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object with a more distant spiral galaxy in the background. Herbig-Haro 49/50 gives researchers insights into the early phases of the formation of low-mass stars similar to our own Sun. In this Webb image, blue represents light at 2.0-microns (F200W), cyan represents light at 3.3-microns (F335M), green is 4.4-microns (F444W), orange is 4.7-microns (F470N), and red is 7.7-microns (F770W).NASA, ESA, CSA, STScI When NASA’s retired Spitzer Space Telescope observed it in 2006, scientists nicknamed Herbig-Haro 49/50 (HH 49/50) the “Cosmic Tornado” for its helical appearance, but they were uncertain about the nature of the fuzzy object at the tip of the “tornado.” With its higher imaging resolution, Webb provides a different visual impression of HH 49/50 by revealing fine features of the shocked regions in the outflow, uncovering the fuzzy object to be a distant spiral galaxy, and displaying a sea of distant background galaxies.
Image B:
Herbig-Haro 49/50 (Spitzer and Webb Images Side-by-Side)
This side-by-side comparison shows a Spitzer Space Telescope Infrared Array Camera image of HH 49/50 (left) versus a Webb image of the same object (right) using the NIRCam (Near-infrared Camera) instrument and MIRI (Mid-infrared Instrument). The Webb image shows intricate details of the heated gas and dust as the protostellar jet slams into the material. Webb also resolves the “fuzzy” object located at the tip of the outflow into a distant spiral galaxy. The Spitzer image shows 3.6-micron light in blue, the 4.5-micron in green, and the 8.0-micron in red (IRAC1, IRAC2, IRAC4). In the Webb image, blue represents light at 2.0-microns (F200W), cyan represents light at 3.3-microns (F335M), green is 4.4-microns (F444W), orange is 4.7-microns (F470N), and red is 7.7-microns (F770W).NASA, ESA, CSA, STScI, NASA-JPL, SSC HH 49/50 is located in the Chamaeleon I Cloud complex , one of the nearest active star formation regions in our Milky Way, which is creating numerous low-mass stars similar to our Sun. This cloud complex is likely similar to the environment that our Sun formed in. Past observations of this region show that the HH 49/50 outflow is moving away from us at speeds of 60-190 miles per second (100-300 kilometers per second) and is just one feature of a larger outflow.
Webb’s NIRCam and MIRI observations of HH 49/50 trace the location of glowing hydrogen molecules, carbon monoxide molecules, and energized grains of dust, represented in orange and red, as the protostellar jet slams into the region. Webb’s observations probe details on small spatial scales that will help astronomers to model the properties of the jet and understand how it is affecting the surrounding material.
The arc-shaped features in HH 49/50, similar to a water wake created by a speeding boat, point back to the source of this outflow. Based on past observations, scientists suspect that a protostar known as Cederblad 110 IRS4 is a plausible driver of the jet activity. Located roughly 1.5 light-years away from HH 49/50 (off the lower right corner of the Webb image), CED 110 IRS4 is a Class I protostar. Class I protostars are young objects (tens of thousands to a million years old) in the prime time of gaining mass. They usually have a discernable disk of material surrounding them that is still falling onto the protostar. Scientists recently used Webb’s NIRCam and MIRI observations to study this protostar and obtain an inventory of the icy composition of its environment.
These detailed Webb images of the arcs in HH 49/50 can more precisely pinpoint the direction to the jet source, but not every arc points back in the same direction. For example, there is an unusual outcrop feature (at the top right of the main outflow) which could be another chance superposition of a different outflow, related to the slow precession of the intermittent jet source. Alternatively, this feature could be a result of the main outflow breaking apart.
The galaxy that appears by happenstance at the tip of HH 49/50 is a much more distant, face-on spiral galaxy. It has a prominent central bulge represented in blue that shows the location of older stars. The bulge also shows hints of “side lobes” suggesting that this could be a barred-spiral galaxy. Reddish clumps within the spiral arms show the locations of warm dust and groups of forming stars. The galaxy even displays evacuated bubbles in these dusty regions, similar to nearby galaxies observed by Webb as part of the PHANGS program.
Webb has captured these two unassociated objects in a lucky alignment. Over thousands of years, the edge of HH 49/50 will move outwards and eventually appear to cover up the distant galaxy.
Want more? Take a closer look at the image, “fly through” it in a visualization, and compare Webb’s image to the Spitzer Space Telescope’s.
Herbig-Haro 49/50 is located about 625 light-years from Earth in the constellation Chamaeleon.
The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Quyen Hart – qhart@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Images – Webb images of other protostar outflows – L483, HH 46/47, and HH 211
Animation Video – “Exploring Star and Planet Formation”
Interactive – Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive
Article – Read more about Herbig-Haro objects
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Galaxies
Universe
Share
Details
Last Updated Mar 23, 2025 EditorStephen SabiaContactLaura Betzlaura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars Stellar Evolution The Universe View the full article
-
By NASA
At Goddard Space Flight Center, the GSFC Data Science Group has completed the testing for their SatVision Top-of-Atmosphere (TOA) Foundation Model, a geospatial foundation model for coarse-resolution all-sky remote sensing imagery. The team, comprised of Mark Carroll, Caleb Spradlin, Jordan Caraballo-Vega, Jian Li, Jie Gong, and Paul Montesano, has now released their model for wide application in science investigations.
Foundation models can transform the landscape of remote sensing (RS) data analysis by enabling the pre-training of large computer-vision models on vast amounts of remote sensing data. These models can be fine-tuned with small amounts of labeled training and applied to various mapping and monitoring applications. Because most existing foundation models are trained solely on cloud-free satellite imagery, they are limited to applications of land surface or require atmospheric corrections. SatVision-TOA is trained on all-sky conditions which enables applications involving atmospheric variables (e.g., cloud or aerosol).
SatVision TOA is a 3 billion parameter model trained on 100 million images from Moderate Resolution Imaging Spectroradiometer (MODIS). This is, to our knowledge, the largest foundation model trained solely on satellite remote sensing imagery. By including “all-sky” conditions during pre-training, the team incorporated a range of cloud conditions often excluded in traditional modeling. This enables 3D cloud reconstruction and cloud modeling in support of Earth and climate science, offering significant enhancement for large-scale earth observation workflows.
With an adaptable and scalable model design, SatVision-TOA can unify diverse Earth observation datasets and reduce dependency on task-specific models. SatVision-TOA leverages one of the largest public datasets to capture global contexts and robust features. The model could have broad applications for investigating spectrometer data, including MODIS, VIIRS, and GOES-ABI. The team believes this will enable transformative advancements in atmospheric science, cloud structure analysis, and Earth system modeling.
The model architecture and model weights are available on GitHub and Hugging Face, respectively. For more information, including a detailed user guide, see the associated white paper: SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery.
Examples of image reconstruction by SatVision-TOA. Left: MOD021KM v6.1 cropped image chip using MODIS bands [1, 3, 2]. Middle: The same images with randomly applied 8×8 mask patches, masking 60% of the original image. Right: The reconstructed images produced by the model, along with their respective Structural Similarity Index Measure (SSIM) scores. These examples illustrate the model’s ability to preserve structural detail and reconstruct heterogeneous features, such as cloud textures and land-cover transitions, with high fidelity.NASAView the full article
-
By NASA
Learn Home Eclipse Soundscapes AudioMoth… Audio Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science 3 min read
Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used to capture sound data as part of the Eclipse Soundscapes Project — a multisensory participatory science (also known as “citizen science”) project that is studying how eclipses impact life on Earth. Following the eclipse, participants had the option to keep or send back their AudioMoth device for donation. Fifty-two AudioMoths were sent back to Eclipse Soundscapes (ES) so that ES could donate them to projects or communities for future scientific usage. Eighteen of those AudioMoths have been donated to Dark Sky Missouri, an initiative to protect our night skies and the creatures that depend on them. On Wednesday, August 21, 2024, at 3 p.m. EST, Eclipse Soundscapes hosted a webinar with Dark Sky Missouri founder Don Ficken to learn more about how these AudioMoths will contribute to future participatory science.
Don Ficken is a Missouri Master Naturalist and amateur astronomer who found the Eclipse Soundscapes Project through SciStarter, an organization that helps bring together millions of curious and concerned people in the world to engage in real-world research questions through citizen science. He participated as a Data Collector in 2024. “[The Eclipse Soundscapes Project] opened up a door for me because I never really thought about sound acoustics in this way,” Ficken said.
It occurred to Ficken that acoustics could help bolster Dark Sky Missouri’s efforts to study and conserve night time wildlife. One of these efforts, Lights Out Heartland, encourages homeowners and businesses to minimize artificial light usage in order to protect migrating birds from collisions due to disorienting bright lights. Ficken hopes to use the AudioMoths to capture the birds’ nocturnal flight calls as they fly over locations like the Gateway Arch, Shaw Nature Reserve, and Missouri Botanical Gardens.
Dark Sky Missouri also hopes to take more general surveys of nature at night by placing AudioMoths in parks and natural areas. Even though parks are not typically open or staffed at night, the AudioMoths could help map the locations and movements of wildlife, creating talking points and learning opportunities for staff and visitors alike.
Both initiatives will be piloted during the fall bird migration, with the goal of developing a framework for an expanded long term project. While there are no opportunities for the general public to get involved in the projects just yet, Ficken says participatory scientists can benefit from the multisensory methods employed in the Eclipse Soundscapes Project. “I think that the thing that they should think about is really the door that acoustics would be opening for them,” he said. “In other words, you don’t have to just visually look at daytime. Think about sound. Think about night.” For more information on how Dark Sky Missouri will use the AudioMoth recorders, read the Eclipse Soundscapes blog post.
The Eclipse Soundscapes Project is supported by NASA under cooperative agreement award number 80NSSC21M0008 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Dark Sky Missouri will use the donated Eclipse Soundscapes AudioMoths to study bird calls and behavior at night. Share
Details
Last Updated Aug 28, 2024 Editor NASA Science Editorial Team Related Terms
2024 Solar Eclipse Astrophysics Audio Citizen Science Earth Science Heliophysics Planetary Science Science Activation Explore More
2 min read Hubble Traces Star Formation in a Nearby Nebula
Article
2 hours ago
2 min read Hubble Pinpoints a Dim, Starry Mini-galaxy
Article
1 day ago
5 min read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All
Article
2 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
2 min read
Geospatial AI Foundation Model Team Receives NASA Marshall Group Achievement Award
Rahul Ramachandran of NASA IMPACT, left, Elizabeth Fancher of NASA IMPACT, Ankur Kumar of the University of Alabama in Huntsville (UAH), Sujit Roy of UAH, Raghu Ganti of IBM Research, David McKenzie of NASA, Muthukumaran Ramasubramanian of UAH, Iksha Gurung of UAH, and Manil Maskey of NASA IMPACT, right, accept the NASA Marshall Space Flight Center Group Achievement Award on Thursday, August 15, 2024 at NASA Marshall. NASA NASA’s science efforts aim to empower scientists with the tools to perform research into our planet and universe. To this end, a collaborative effort between NASA and IBM created an AI geospatial foundation model, which was released as an open-source application in 2024.
Trained on vast amounts of NASA Earth science data, the foundation model can be adapted for Earth science applications such as flood, burn scar, and cropland studies. Tailoring the model for a specific task takes far less data than the original training set, providing an easy path for researchers to perform AI-powered studies.
For their groundbreaking work on this project, the development team behind the foundation model has received the NASA Marshall Space Flight Center Group Achievement Award. Their success with the model showcases their commitment to advancing AI and scientific research and will inspire progress in this field for years to come.
The team members from NASA’s Marshall Space Fight Center /IMPACT (Interagency Implementation and Advanced Concepts Team) are:
Rahul Ramachandran Manil Maskey Elizabeth Fancher The team members from the University of Alabama in Huntsville (UAH) are:
Sujit Roy Ankur Kumar Christopher Phillips Iksha Gurung Muthukumaran Ramasubramanian The team members from IBM are:
Ranjini Bangalore Juan Bernabe-Moreno Dario Augusto Borges Oliveira Linsong Chu Blair Edwards Paolo Fraccaro Carlos Gomes Raghu Ganti Adnan Hoque Johannes Jakubik Levente Klein Devyani Lambhate Gabby Nyirjesy Naomi Simumba Johannes Schmude Mudhakar Srivatsa Harini Srinivasan Daniela Szwarcman Rob Parkin Kommy Weldemariam Campbell Watson Bianca Zadrozny The team members from Clark University are:
Hamed Alemohammad Michael Cecil Steve Li Sam Khallaghi Denys Godwin Maryam Ahmadi Fatemeh Kordi To learn more about the NASA projects improving accessible science discovery for the benefit of all, visit the Open Science at NASA page.
Share
Details
Last Updated Aug 15, 2024 Related Terms
Open Science Explore More
5 min read How NASA Citizen Science Fuels Future Exoplanet Research
Article
1 week ago
3 min read Meet NASA Interns Shaping Future of Open Science
Article
3 weeks ago
4 min read Mapping the Red Planet with the Power of Open Science
Article
2 months ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.