Jump to content

In Deep Galaxy Surveys, Astronomers Get a Boost – from Gravity


HubbleSite

Recommended Posts

low_STSCI-H-p-1104a-k-1340x520.png

Astronomers are finding that the idiom "can't see the forest for the trees" applies to the universe of galaxies as well. In a paper published today in the science journal Nature, an international team of astronomers predicts that foreground galaxies will affect images of extremely far galaxies. The gravitational fields of the foreground galaxies distort space like a funhouse mirror. This means that a significant fraction of far background galaxies will appear on the sky near foreground galaxies. The good news is that the remote galaxies will appear brighter because of a phenomenon called gravitational lensing. This will need to be factored in when astronomers plan to look for the farthest galaxies in the universe with the planned James Webb Space Telescope.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This illustration shows a red, early-universe dwarf galaxy that hosts a rapidly feeding black hole at its center. Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers have discovered this low-mass supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang. It is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.NOIRLab/NSF/AURA/J. da Silva/M. Zamani A rapidly feeding black hole at the center of a dwarf galaxy in the early universe, shown in this artist’s concept, may hold important clues to the evolution of supermassive black holes in general.
      Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers discovered this low-mass supermassive black hole just 1.5 billion years after the big bang. The black hole is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.
      Supermassive black holes exist at the center of most galaxies, and modern telescopes continue to observe them at surprisingly early times in the universe’s evolution. It’s difficult to understand how these black holes were able to grow so big so rapidly. But with the discovery of a low-mass supermassive black hole feasting on material at an extreme rate so soon after the birth of the universe, astronomers now have valuable new insights into the mechanisms of rapidly growing black holes in the early universe.
      The black hole, called LID-568, was hidden among thousands of objects in the Chandra X-ray Observatory’s COSMOS legacy survey, a catalog resulting from some 4.6 million Chandra observations. This population of galaxies is very bright in the X-ray light, but invisible in optical and previous near-infrared observations. By following up with Webb, astronomers could use the observatory’s unique infrared sensitivity to detect these faint counterpart emissions, which led to the discovery of the black hole.
      The speed and size of these outflows led the team to infer that a substantial fraction of the mass growth of LID-568 may have occurred in a single episode of rapid accretion.
      LID-568 appears to be feeding on matter at a rate 40 times its Eddington limit. This limit relates to the maximum amount of light that material surrounding a black hole can emit, as well as how fast it can absorb matter, such that its inward gravitational force and outward pressure generated from the heat of the compressed, infalling matter remain in balance.
      These results provide new insights into the formation of supermassive black holes from smaller black hole “seeds,” which current theories suggest arise either from the death of the universe’s first stars (light seeds) or the direct collapse of gas clouds (heavy seeds). Until now, these theories lacked observational confirmation.
      The new discovery suggests that “a significant portion of mass growth can occur during a single episode of rapid feeding, regardless of whether the black hole originated from a light or heavy seed,” said International Gemini Observatory/NSF NOIRLab astronomer Hyewon Suh, who led the research team.
      A paper describing these results (“A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST”) appears in the journal Nature Astronomy.
      About the Missions
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      News Media Contact
      Elizabeth Laundau
      NASA Headquarters
      Washington, DC
      202-923-0167
      elizabeth.r.landau@nasa.gov
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble) This NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.
      See more images of NGC 1672.
      Image credit: ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble)
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Captures a Galaxy with… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Captures a Galaxy with Many Lights
      This NASA/ESA Hubble Space Telescope image captures the spiral galaxy NGC 1672 with a supernova. ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble)
      Download this image

      This NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.
      Image Before/After Along with its bright young stars and X-ray core, a highlight of this image is the most fleeting and temporary of lights: a supernova, visible in just one of the six Hubble images that make up this composite. Supernova SN 2017GAX was a Type I supernova caused by the core-collapse and subsequent explosion of a giant star that went from invisible to a new light in the sky in just a matter of days. In the image above, the supernova is already fading and is visible as a small green dot just below the crook of the spiral arm on the right side. Astronomers wanted to look for any companion star that the supernova progenitor may have had — something impossible to spot beside a live supernova — so they purposefully captured this image of the fading supernova.
      Recently, NGC 1672 was also among a crop of galaxies imaged with the NASA/ESA/CSA James Webb Space Telescope, showing the ring of gas and the structure of dust in its spiral arms. The image below compares the Webb image with Hubble’s image.
      Image Before/After Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Nov 08, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies Stars Supernovae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Focus: Galaxies through Space and Time


      Hubble Focus: Galaxies through Space and Time


      Hubble’s Partners in Science


      View the full article
    • By NASA
      2 min read
      Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm surges and widespread impacts on communities in its path. At the same time, NASA’s Atmospheric Waves Experiment, or AWE, recorded enormous swells in the atmosphere that the hurricane produced roughly 55 miles above the ground. Such information helps us better understand how terrestrial weather can affect space weather, part of the research NASA does to understand how our space environment can disrupt satellites, communication signals, and other technology.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      As the International Space Station traveled over the southeastern United States on Sept. 26, 2024, AWE observed atmospheric gravity waves generated by Hurricane Helene as the storm slammed into the gulf coast of Florida. The curved bands extending to the northwest of Florida, artificially colored red, yellow, and blue, show changes in brightness (or radiance) in a wavelength of infrared light produced by airglow in Earth’s mesosphere. The small black circles on the continent mark the locations of cities. To download this video or other versions with alternate color schemes, visit this page. Utah State University These massive ripples through the upper atmosphere, known as atmospheric gravity waves, appear in AWE’s images as concentric bands (artificially colored here in red, yellow, and blue) extending away from northern Florida.
      “Like rings of water spreading from a drop in a pond, circular waves from Helene are seen billowing westward from Florida’s northwest coast,” said Ludger Scherliess, who is the AWE principal investigator at Utah State University in Logan.
      Launched in November 2023 and mounted on the outside of the International Space Station, the AWE instrument looks down at Earth, scanning for atmospheric gravity waves, ripple-like patterns in the air generated by atmospheric disturbances such as violent thunderstorms, tornadoes, tsunamis, wind bursts over mountain ranges, and hurricanes. It does this by looking for brightness fluctuations in colorful bands of light called airglow in Earth’s mesosphere. AWE’s study of these gravity waves created by terrestrial weather helps NASA pinpoint how they affect space weather.
      These views of gravity waves from Hurricane Helene are among the first publicly released images from AWE, confirming that the instrument has the sensitivity to reveal the impacts hurricanes have on Earth’s upper atmosphere.
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA provides a variety of pathways for those outside the agency to contribute to authentic and meaningful research. Whether you’re a student pursuing a degree in STEM (science, technology, engineering, or mathematics), an educator looking for new ways to engage your classroom, or a citizen scientist enthusiastic about sharing your observations, there’s a wide array of opportunities to get involved in NASA research.
      Citizen scientists around the world participate in environmental observation and measurement efforts through GLOBE.NASA Everybody
      People from all around the world can make contributions to NASA research through citizen science projects and other opportunities available to the public.
      Share your observations and take measurements in your part of the world through GLOBE (Global Learning and Observations to Benefit the Environment), an international science and education initiative that engages students, teachers, and the public in collecting and analyzing environmental data. Do you have a relevant idea for human health science research that could be performed on the future Gateway lunar space station? Follow these steps to share your idea for consideration. The Prizes, Challenges, and Crowdsourcing program through NASA’s Space Technology Mission Directorate invites citizen scientists to develop innovations in recycling material waste on deep space missions, develop aids/devices for navigating on the lunar surface during future Artemis missions, and more. Do you have the “right stuff” to participate in a simulated deep space mission? NASA’s HERA (the Human Exploration Research Analog) is seeking healthy subjects to participate in 45-day simulations to study the physiological and psychological effects of isolation and confinement on humans to help prepare for future missions to the Moon and Mars. Visit the NASA Citizen Science webpage for more opportunities to discover the secrets of the universe, search for life elsewhere, and improve life on Earth and in space. This collage features the winning designs in the 2024 Dream with Us Design Challenge, which asks students to dream of innovations for the future of aviation.NASA Middle and High School Students
      Students can gain valuable experience while making a difference in the future of aeronautics and exploration.
      Rising high school juniors and seniors are eligible to apply for the four-week Gene Lab for High School Students training program sponsored by NASA’s Ames Research Center in Silicon Valley, California. The program focuses on collecting and analyzing complex biological data such as genetic codes, and computational biology. Through the annual TechRise Student Challenge offered by NASA’s Space Technology Mission Directorate, U.S. students in grades 6 to 12 form teams and design an experiment to fly on a suborbital flight platform such as a high-altitude balloon. Interested in aviation? The Dream With Us Design Challenge through NASA’s Aeronautics Research Mission Directorate invites students in grades 6 to 12 to envision new innovations that will improve the safety, sustainability, and accessibility of aviation systems and technology. Through NASA internships, U.S. students ages 16 and up can boost their research experience and contribute to NASA’s work with the guidance of an agency mentor. This collage features the winning designs in the 2024 Dream with Us Design Challenge, which asks students to dream of innovations for the future of aviation.NASA Undergraduate and Graduate Students
      NASA offers a variety of research opportunities for college students preparing to launch their own exciting careers in STEM.
      NASA’s Established Program to Stimulate Competitive Research (EPSCoR) grants competitive awards to enable college and university students within specific U.S. jurisdictions to participate in cutting-edge research projects that address NASA’s challenges and needs. The National Space Grant College and Fellowship Project (Space Grant), is a national network of colleges and universities comprising a total of 52 consortia across the U.S. These consortia fund several research opportunities for students attending member colleges and universities. Look up your state’s Space Grant consortium website to discover available opportunities. NASA internships are available in a wide range of opportunities for undergraduate and graduate students, enabling meaningful contributions to NASA’s missions as well as authentic experience as a part of the agency’s world-class workforce. Through the University Student Research Challenge, students are invited to propose their ideas describing innovative new approaches to tackling one of six major research areas as outlined by NASA’s Aeronautics Research Mission Directorate. Students can take part in valuable studies of the ever-changing Earth system through NASA’s Earth Science Division’s Early Career Research (ECR) program. ECR includes the eight-week Student Airborne Research Program, the Climate Change Research Initiative, and more. College students at Minority Serving Institutions can contribute to the agency’s exploration goals through many opportunities offered by NASA’s Minority University Research and Education Project (MUREP). Educators of grades K-8 take part in a workshop hosted by NASA’s Next Gen STEM.NASA Educators
      NASA provides opportunities for educators to participate in authentic aerospace research, as well as to engage their students in research in the classroom.
      Space Grant offers a variety of opportunities for educators, from curriculum enhancement and faculty development to grants enabling teachers to bring NASA research into the classroom. Look up your state’s Space Grant consortium website to discover available opportunities. NASA welcomes interns with professional teaching experience to help foster the education and curiosity of students who will shape the future workforce. Visit NASA Internships to learn more and find current opportunities. Through NASA’s Climate Change Research Initiative, part of the agency’s Earth Science Division’s Early Career Research Program, high school STEM educators can join a research team led by NASA scientists to focus on a research area related to climate change. There’s More to Explore
      Explore available NASA STEM learning experiences, such as internship roles, student competitions, or engagements with NASA researchers, through NASA’s STEM Gateway platform. Visit NASA’s Learning Resources webpage for the latest news and resources from the agency’s Office of STEM Engagement.
      Keep Exploring Discover More STEM Topics From NASA
      NASA STEM Engagement Funding Opportunities
      For Colleges and Universities
      About STEM Engagement at NASA
      NASA EXPRESS Newsletter Sign-up
      View the full article
  • Check out these Videos

×
×
  • Create New...