Members Can Post Anonymously On This Site
Earth Information Center Opening Ceremony at NASA Headquarters (Official NASA Broadcast)
-
Similar Topics
-
By NASA
Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Md.
757-824-2958
jeremy.l.eggers@nasa.gov
View the full article
-
By NASA
Johnson Space Center Vibration Test FacilityNASA Nov. 14, 2024
NASA Johnson Invites Proposals to Lease Vibration Test Facility
NASA’s Johnson Space Center is seeking proposals for the use of its historic, but underused, Vibration and Acoustic Test Facility. Prospective tenants must submit facility walk-through requests by Monday, Nov. 18.
Final proposals are due by 12 p.m. EST Monday, Dec. 16, and must promote activities that will build, expand, modernize, or operate aerospace-related capabilities at NASA Johnson and help preserve the historic and iconic building through preservation and adaptive reuse.
NASA plans to sign a National Historic Preservation Act (NHPA) lease agreement for the facility, also known as Building 49, for a five-year base period and one five-year extension to be negotiated between NASA and the tenant. To request a walk-through, send an email to hq-realestate@mail.nasa.gov.
“This historic facility has been used for decades to ensure the success and safety of all human spaceflight missions by putting engineering designs and hardware to the ultimate stress tests,” said NASA Johnson Director Vanessa Wyche. “For more than 60 years, NASA Johnson has been the hub of human space exploration and this agreement will be a vital part of the center’s efforts to develop a robust and durable space economy that refines our understanding of the solar system and space exploration.”
All proposals must adhere to the guidelines detailed in the Agency Announcement for Proposals describing concept plans for development of the property, including any modifications proposed to the building; a statement of financial capability to successfully achieve and sustain operations, demonstrated experience with aerospace-related services or other space-related activities, and a detailed approach to propelling the space economy.
The nine-story building complex has a gross square footage of 62,737 square feet and consists of a north wing measuring 62 feet long, 268 feet wide and 106 feet tall, and a central wing about 64 feet long and 115 feet wide. Building 49 currently houses five laboratories, including the General Vibration Laboratory, Modal Operations Laboratory, Sonic Fatigue Laboratory, Spacecraft Acoustic Laboratory, and Spacecraft Vibration Laboratory. The south administrative portion of the building is not included in the property offered for lease.
As the home of Mission Control Center for the agency’s human space missions, astronaut training, robotics, human health and space medicine, NASA Johnson leads the way for the human exploration. Leveraging its unique role and location, the center is developing multiple lease agreements, including the recently announced Exploration Park, to sustain its key role in helping the human spaceflight community foster a robust space.
In the coming years, NASA and its academic, commercial, and international partners will see the completion of the International Space Station Program, the commercial development of low Earth orbit, and the first human Artemis campaign missions establishing sustainable human presence on the Moon in preparation for human missions to Mars.
Johnson already is leading the commercialization of space with the commercial cargo and crew programs and private astronaut missions to the space station. The center also is supporting the development of commercial space stations in low Earth orbit, and lunar-capable commercial spacesuits and lunar landers that will be provided as services to both NASA and the private sector to accelerate human access to space. Through the development of Exploration Park, the center will broaden the scope of the human spaceflight community that is tackling the many difficult challenges ahead.
Learn more about NASA Johnson’s efforts to collaborate with industry partners:
https://www.nasa.gov/johnson/frontdoor
-end-
Kelly Humphries
Johnson Space Center, Houston
281-483-5111
kelly.o.humphries@nasa.gov
View the full article
-
By NASA
Peru’s Vice Minister of Defense Policies for Ministry of Defense César Medardo Torres Vega, NASA Administrator Bill Nelson, and Director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Maj. Gen. Roberto Melgar Sheen meet in Lima, Peru, Nov. 14, 2024, where the U.S. and Peru signed a memorandum of understanding agreeing to study a potential sounding rocket campaign.Credit: U.S. Embassy Peru NASA and Peru’s National Commission for Aerospace Research and Development (CONIDA) laid the groundwork for a potential multi-year scientific rocket launch campaign in the South American country.
Both countries signed a non-binding memorandum of understanding Thursday that includes safety training, a joint feasibility study for the potential campaign, and technical assistance for CONIDA on sounding rocket launches. Sounding rockets are small, low-cost rockets that provide suborbital access to space.
“We are excited to look at the possibility of once again launching sounding rockets from Peru,” said NASA Administrator Bill Nelson, who signed on behalf of the United States. “This agreement deepens our international partnership with Peru and the scientific research we conduct because of the country’s location along the magnetic equator. Together we will go farther.”
Maj. Gen. Roberto Melgar Sheen, head of CONIDA, signed on behalf of Peru. Brian Nichols, assistant secretary for Western Hemisphere Affairs for the U.S. State Department, and Stephanie Syptak-Ramnath, U.S. ambassador to Peru, also participated, among other Peruvian officials. The event took place during the week of the Asia-Pacific Economic Cooperation forum beginning Nov. 9 in Lima.
During his visit to Peru, Nelson also discussed the importance of international partnerships and collaboration in space and celebrated Peru’s signing of the Artemis Accords earlier this year.
The United States and Peru have a long history of space cooperation. NASA conducted sounding rocket campaigns at CONIDA’s Punta Lobos launch base in 1975 and 1983.
NASA uses sounding rockets to carry scientific instruments into space on suborbital flights to collect important science data and test prototype instruments. They yield invaluable data that enhance our understanding of Earth’s atmosphere and weather, our solar system, and the universe, and test equipment for deeper space travel.
Understanding our Earth’s atmosphere and how it is influenced by the Sun is crucial to protecting ground and space-based assets that we rely on every day, from the power grid to weather data and even navigation.
For more information about NASA’s international partnerships, visit:
https://www.nasa.gov/oiir
-end-
Meira Bernstein / Elizabeth Shaw
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Nov 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) Sounding Rockets View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The laser that transmits between NASA’s Psyche spacecraft and Earth-based observatories for the Deep Space Optical Communications experiment successfully reaches its target thanks, in part, to a vibration isolation platform developed by Controlled Dynamics Inc., and supported by several Space Technology Mission Directorate programs. NASA/JPL-Caltech One year ago today, the future of space communications arrived at Earth as a beam of light from a NASA spacecraft nearly 10 million miles away. That’s 40 times farther than our Moon. That’s like using a laser pointer to track a moving dime from a mile away. That’s pretty precise.
That laser — transmitted from NASA’s DSOC (Deep Space Optical Communications) technology demonstration — has continued to hit its target on Earth from record-breaking distances.
“NASA’s Deep Space Optical Communications features many novel technologies that are needed to precisely point and track the uplink beacon and direct the downlink laser,” said Bill Klipstein, DSOC project manager at NASA’s Jet Propulsion Laboratory in Southern California.
One of the technologies aiding that extremely precise pointing was invented by a small business and fostered by NASA for more than a decade.
Whole Lotta Shakin’ Going On (Not!)
Part of the challenge with the precision pointing needed for DSOC was isolating the laser from the spacecraft’s vibrations, which would nudge the beam off target. Fortunately for NASA, Controlled Dynamics Inc. (CDI), in Huntington Beach, California, offered a solution to this problem.
The company had a platform designed to isolate orbiting experiments from vibrations caused by their host spacecraft, other payloads, crew movements, or even their own equipment. Just as the shocks on a car provide a smoother ride, the struts and actuators on CDI’s vibration isolation platform created a stable setting for delicate equipment.
This idea needed to be developed and tested first to prove successful.
The Path to Deep Space Success
NASA’s Space Technology Mission Directorate started supporting the platform’s development in 2012 under its Game Changing Development program with follow-on support from the SBIR (Small Business Innovation Research) program. The technology really began to take off — pun intended — under NASA’s Flight Opportunities program. Managed out of NASA’s Armstrong Flight Research Center in Edwards, California, Flight Opportunities rapidly demonstrates promising technologies aboard suborbital rockets and other vehicles flown by commercial companies.
Early flight tests in 2013 sufficiently demonstrated the platform’s performance, earning CDI’s technology a spot on the International Space Station in 2016. But the flight testing didn’t end there. A rapid series of flights with Blue Origin, UP Aerospace, and Virgin Galactic put the platform through its paces, including numerous boosts and thruster firings, pyrotechnic shocks, and the forces of reentry and landing.
“Flight Opportunities was instrumental in our development,” said Dr. Scott Green, CDI’s co-founder and the platform’s principal investigator. “With five separate flight campaigns in just eight months, those tests allowed us to build up flight maturity and readiness so we could transition to deep space.”
The vibration isolation platform developed by Controlled Dynamics Inc., and used on the Deep Space Optical Communications experiment conducted numerous tests through NASA’s Flight Opportunities program, including this flight aboard Virgin Galactic’s VSS Unity in February 2019. Virgin Galactic The culmination of NASA’s investments in CDI’s vibration isolation platform was through its Technology Demonstration Missions program, which along with NASA’s SCaN (Space Communications and Navigation) program supported NASA’s Deep Space Optical Communications.
On Oct. 13, 2023, DSOC launched aboard the Psyche spacecraft, a mission managed by JPL. The CDI isolation platform provided DSOC with the active stabilization and precision pointing needed to successfully transmit a high-definition video of Taters the cat and other sample data from record-breaking distances in deep space.
“Active stabilization of the flight laser transceiver is required to help the project succeed in its goal to downlink high bandwidth data from millions of miles,” said Klipstein. “To do this, we need to measure our pointing and avoid bumping into the spacecraft while we are floating. The CDI struts gave us that capability.”
The Deep Space Optical Communications technology demonstration’s flight laser transceiver is shown at NASA’s Jet Propulsion Laboratory in Southern California in April 2021. The transceiver is mounted on an assembly of struts and actuators — developed by Controlled Dynamics Inc. — that stabilizes the optics from spacecraft vibrations. Several Space Technology Mission Directorate programs supported the vibration isolation technology’s development. NASA/JPL-Caltech Onward Toward Psyche
The Psyche spacecraft is expected to reach its namesake metal-rich asteroid located between Mars and Jupiter by August 2029. In the meantime, the DSOC project team is celebrating recognition as one of TIME’s Inventions of 2024 and expects the experiment to continue adding to its long list of goals met and exceeded in its first year.
By Nancy Pekar
NASA’s Flight Opportunities Program
Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
Deep Space Optical Communications (DSOC)
Game Changing Development
Flight Opportunities
Share
Details
Last Updated Nov 14, 2024 EditorLoura Hall Related Terms
Space Technology Mission Directorate Armstrong Flight Research Center Deep Space Optical Communications (DSOC) Flight Opportunities Program Game Changing Development Program Jet Propulsion Laboratory Psyche Mission Small Business Innovation Research / Small Business Space Communications & Navigation Program Technology Technology Demonstration Missions Program View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar NASA is participating in a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires.
The rugged and often remote locations where wildland fires burn mean cell phone service is often limited, making communication between firefighters and command posts difficult.
The flight testing of the Strategic Tactical Radio and Tactical Overwatch (STRATO) technology brought together experts from NASA’s Ames Research Center in California’s Silicon Valley, the U.S. Forest Service, high-altitude balloon company Aerostar, and Motorola to provide cell service from above. The effort was funded by the NASA Science Mission Directorate’s Earth Science Division Airborne Science Program and the agency’s Space Technology Mission Directorate Flight Opportunities program.
“This project leverages NASA expertise to address real problems,” said Don Sullivan, principal investigator for STRATO at NASA Ames. “We do a lot of experimental, forward-thinking work, but this is something that is operational and can make an immediate impact.”
Flying High Above Wildland Fires
Soaring above Earth at altitudes of 50,000 feet or more, Aerostar’s Thunderhead high-altitude balloon systems can stay in operation for several months and can be directed to “station keep,” staying within a radius of few miles. Because wildland fires often burn in remote, rugged areas, firefighting takes place in areas where cell service is not ideal. Providing cellular communication from above, from a vehicle that can move as the fire changes, would improve firefighter safety and firefighting efficiency.
The STRATO project’s first test flight took place over the West Mountain Complex fires in Idaho in August and demonstrated significant opportunities to support future firefighting efforts. The balloon was fitted with a cellular LTE transmitter and visual and infrared cameras. To transmit between the balloon’s cell equipment and the wildland fire incident command post, the team used a SpaceX Starlink internet satellite device and Silvus broadband wireless system.
When tested, the onboard instruments provided cell coverage for a 20-mile radius. By placing the transmitter on a gimbal, that cell service coverage could be adjusted as ground crews moved through the region.
The onboard cameras gave fire managers and firefighters on the ground a bird’s-eye view of the fires as they spread and moved, opening the door to increased situational awareness and advanced tracking of firefighting crews. On the ground, teams use an app called Tactical Awareness Kit (TAK) to identify the locations of crew and equipment. Connecting the STRATO equipment to TAK provides real-time location information that can help crews pinpoint how the fire moves and where to direct resources while staying in constant communication.
Soaring Into the Future
The next steps for the STRATO team are to use the August flight test results to prepare for future fire seasons. The team plans to optimize balloon locations as a constellation to maximize coverage and anticipate airflow changes in the stratosphere where the balloons fly. By placing balloons in strategic locations along the airflow path, they can act as replacements to one another as they are carried by airflow streams. The team may also adapt the scientific equipment aboard the balloons to support other wildland fire initiatives at NASA.
As the team prepares for further testing next year, the goal is to keep firefighters informed and in constant communication with each other and their command posts to improve the safety and efficiency of fighting wildland fires.
“Firefighters work incredibly hard saving lives and property over long days of work,” said Sullivan. “I feel honored to be able to do what we can to make their jobs safer and better.”
Share
Details
Last Updated Nov 14, 2024 Related Terms
Ames Research Center Airborne Science Earth Science Division Flight Opportunities Program Explore More
5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
Article 17 mins ago 3 min read Entrevista con Instructor de OCEANOS Samuel Suleiman
Article 1 day ago 4 min read Entrevista con Instructora de OCEANOS María Fernanda Barberena-Arias
Article 2 days ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Improving Firefighter Safety with STRATO
Airborne Science at Ames
Space Technology Mission Directorate
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.