Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      View the full article
    • By NASA
      4 Min Read NASA 3D-Printed Antenna Takes Additive Manufacturing to New Heights
      The 3D-printed antenna mounted to a ladder prior to testing at NASA's Columbia Scientific Balloon Facility in Palestine, Texas. Credits: NASA/Peter Moschetti In fall 2024, NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth. The antenna, tested in flight using an atmospheric weather balloon, could open the door for using 3D printing as a cost-effective development solution for the ever-increasing number of science and exploration missions.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth.NASA/Kasey Dillahay Printing
      For this technology demonstration, engineers from NASA’s Near Space Network designed and built a 3D-printed antenna, tested it with the network’s relay satellites, and then flew it on a weather balloon.
      The 3D printing process, also known as additive manufacturing, creates a physical object from a digital model by adding multiple layers of material on top of each other, usually as a liquid, powder, or filament. The bulk of the 3D-printed antenna uses a low electrical resistance, tunable, ceramic-filled polymer material.
      Using a printer supplied by Fortify, the team had full control over several of the electromagnetic and mechanical properties that standard 3D printing processes do not. Once NASA acquired the printer, this technology enabled the team to design and print an antenna for the balloon in a matter of hours. Teams printed the conductive part of the antenna with one of several different conductive ink printers used during the experiment.
      For this technology demonstration, the network team designed and built a 3D-printed magneto-electric dipole antenna and flew it on a weather balloon. [JF1]  A dipole antenna is commonly used in radio and telecommunications. The antenna has two “poles,” creating a radiation pattern similar to a donut shape.
      Testing
      The antenna, a collaboration between engineers within NASA’s Scientific Balloon Program and the agency’s Space Communications and Navigation (SCaN) program, was created to showcase the capabilities of low-cost design and manufacturing.
      Following manufacturing, the antenna was assembled and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in the center’s electromagnetic anechoic chamber.
      The anechoic chamber is the quietest room at Goddard — a shielded space designed and constructed to both resist intrusive electromagnetic waves and suppress their emission to the outside world. This chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space.
      To prepare for testing, NASA intern Alex Moricette installed the antenna onto the mast of the anechoic chamber. The antenna development team used the chamber to test its performance in a space-like environment and ensure it functioned as intended.
      NASA Goddard’s anechoic chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space. Here, the antenna is installed on the mast of the anechoic chamber.NASA/Peter Moschetti Once completed, NASA antenna engineers conducted final field testing at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, before liftoff.
      The team coordinated links with the Near Space Network’s relay fleet to test the 3D-printed antenna’s ability to send and receive data.
      The team monitored performance by sending signals to and from the 3D-printed antenna and the balloon’s planned communications system, a standard satellite antenna. Both antennas were tested at various angles and elevations. By comparing the 3D-printed antenna with the standard antenna, they established a baseline for optimal performance.
      Field testing was performed at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, prior to liftoff. To do this, the 3D-printed antenna was mounted to a ladder.NASA/Peter Moschetti In the Air
      During flight, the weather balloon and hosted 3D-printed antenna were tested for environmental survivability at 100,000 feet and were safely recovered.
      For decades, NASA’s Scientific Balloon Program, managed by NASA’s Wallops Flight Facility in Virginia, has used balloons to carry science payloads into the atmosphere. Weather balloons carry instruments that measure atmospheric pressure, temperature, humidity, wind speed, and direction. The information gathered is transmitted back to a ground station for mission use.
      The demonstration revealed the team’s anticipated results: that with rapid prototyping and production capabilities of 3D printing technology, NASA can create high-performance communication antennas tailored to mission specifications faster than ever before.
      Implementing these modern technological advancements is vital for NASA, not only to reduce costs for legacy platforms but also to enable future missions.
      The Near Space Network is funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Kendall Murphy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      Share
      Details
      Last Updated Jan 22, 2025 EditorGoddard Digital TeamContactKendall Murphykendall.t.murphy@nasa.govLocationGoddard Space Flight Center Related Terms
      Manufacturing, Materials, 3-D Printing Goddard Space Flight Center Scientific Balloons Space Communications & Navigation Program Space Communications Technology Technology Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 3 months ago 3 min read NASA Enables Future of Science Observation through Tri-band Antennas
      Article 2 years ago 4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’
      Article 9 months ago View the full article
    • By Amazing Space
      SpaceX STARSHIP 7th Test Flight LIVE
    • By NASA
      test
      Downloads


      View All

      NESC Pilot Breathing Assessment Data
      Jan 7, 2025
      MP4 ()


      View the full article
    • By NASA
      5 Min Read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      The potentially record-breaking Lunar GNSS Receiver Experiment (LuGRE) payload will be the first known demonstration of GNSS signal reception on and around the lunar surface. Credits: NASA/Dave Ryan As NASA celebrates 55 years since the historic Apollo 11 crewed lunar landing, the agency also is preparing new navigation and positioning technology for the Artemis campaign, the agency’s modern lunar exploration program.
      A technology demonstration helping pave the way for these developments is the Lunar GNSS Receiver Experiment (LuGRE) payload, a joint effort between NASA and the Italian Space Agency to demonstrate the viability of using existing GNSS (Global Navigation Satellite System) signals for positioning, navigation, and timing on the Moon.
      During its voyage on an upcoming delivery to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, LuGRE would demonstrate acquiring and tracking signals from both the U.S. GPS and European Union Galileo GNSS constellations during transit to the Moon, during lunar orbit, and finally for up to two weeks on the lunar surface itself.
      The Lunar GNSS Receiver Experiment (LuGRE) will investigate whether signals from two Global Navigation Satellite System (GNSS) constellations, the U.S. Global Positioning System (GPS) and European Union’s Galileo, can be tracked at the Moon and used for positioning, navigation, and timing (PNT). The LuGRE payload is one of the first demonstrations of GNSS signal reception and navigation on and around the lunar surface, an important milestone for how lunar missions will access navigation and positioning technology. If successful, LuGRE would demonstrate that spacecraft can use signals from existing GNSS satellites at lunar distances, reducing their reliance on ground-based stations on the Earth for lunar navigation.
      Today, GNSS constellations support essential services like navigation, banking, power grid synchronization, cellular networks, and telecommunications. Near-Earth space missions use these signals in flight to determine critical operational information like location, velocity, and time.
      NASA and the Italian Space Agency want to expand the boundaries of GNSS use cases. In 2019, the Magnetospheric Multiscale (MMS) mission broke the world record for farthest GPS signal acquisition 116,300 miles from the Earth’s surface — nearly half of the 238,900 miles between Earth and the Moon. Now, LuGRE could double that distance.
      “GPS makes our lives safer and more viable here on Earth,” said Kevin Coggins, NASA deputy associate administrator and SCaN (Space Communications and Navigation) Program manager at NASA Headquarters in Washington. “As we seek to extend humanity beyond our home planet, LuGRE should confirm that this extraordinary technology can do the same for us on the Moon.”
      NASA, Firefly, Qascom, and Italian Space Agency team members examine LuGRE hardware in a clean room.Firefly Aerospace Reliable space communication and navigation systems play a vital role in all NASA missions, providing crucial connections from space to Earth for crewed and uncrewed missions alike. Using a blend of government and commercial assets, NASA’s Near Space and Deep Space Networks support science, technology demonstrations, and human spaceflight missions across the solar system.
      “This mission is more than a technological milestone,” said Joel Parker, policy lead for positioning, navigation, and timing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We want to enable more and better missions to the Moon for the benefit of everyone, and we want to do it together with our international partners.”
      This mission is more than a technological milestone. We want to enable more and better missions to the Moon for the benefit of everyone…
      JOEL PARKER
      PNT Policy Lead at NASA's Goddard Space Flight Center
      The data-gathering LuGRE payload combines NASA-led systems engineering and mission management with receiver software and hardware developed by the Italian Space Agency and their industry partner Qascom — the first Italian-built hardware to operate on the lunar surface.
      Any data LuGRE collects is intended to open the door for use of GNSS to all lunar missions, not just those by NASA or the Italian Space Agency. Approximately six months after LuGRE completes its operations, the agencies will release its mission data to broaden public and commercial access to lunar GNSS research.
      Firefly Aerospace’s Blue Ghost Mission One lander is carrying 10 NASA science and technology instruments to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace “A project like LuGRE isn’t about NASA alone,” said NASA Goddard navigation and mission design engineer Lauren Konitzer. “It’s something we’re doing for the benefit of humanity. We’re working to prove that lunar GNSS can work, and we’re sharing our discoveries with the world.”
      The LuGRE payload is one of 10 NASA-funded science experiments launching to the lunar surface on this delivery through NASA’s CLPS initiative. Through CLPS, NASA works with American companies to provide delivery and quantity contracts for commercial deliveries to further lunar exploration and the development of a sustainable lunar economy. As of 2024, the agency has 14 private partners on contract for current and future CLPS missions.
      Demonstrations like LuGRE could lay the groundwork for GNSS-based navigation systems on the lunar surface. Bridging these existing systems with emerging lunar-specific navigation solutions has the potential to define how all spacecraft navigate lunar terrain in the Artemis era.
      Artist’s concept rendering of LuGRE aboard the Blue Ghost lunar lander receiving signals from Earth’s GNSS constellations.NASA/Dave Ryan The payload is a collaborative effort between NASA’s Goddard Space Flight Center and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from the agency’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc, a flight under the agency’s CLPS initiative.
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Jan 09, 2025 EditorGoddard Digital TeamContactKorine Powerskorine.powers@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Blue Ghost (lander) Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Earth's Moon Near Space Network Space Communications & Navigation Program View the full article
  • Check out these Videos

×
×
  • Create New...