Jump to content

Cheops explores mysterious warm mini-Neptunes


Recommended Posts

Cheops_explores_mysterious_warm_mini-Nep Image:

ESA’s exoplanet mission Cheops confirmed the existence of four warm exoplanets orbiting four stars in our Milky Way. These exoplanets have sizes between Earth and Neptune and orbit their stars closer than Mercury our Sun.

These so-called mini-Neptunes are unlike any planet in our Solar System and provide a ‘missing link’ between Earth-like and Neptune-like planets that is not yet understood. Mini-Neptunes are among the most common types of exoplanets known, and astronomers are starting to find more and more orbiting bright stars.

Mini-Neptunes are mysterious objects. They are smaller, cooler, and more difficult to find than the so-called hot Jupiter exoplanets which have been found in abundance. While hot Jupiters orbit their star in a matter of hours to days and typically have surface temperatures of more than 1000 °C, warm mini-Neptunes take longer to orbit their host stars and have cooler surface temperatures of only around 300 °C.

The first sign of the existence of these four new exoplanets was found by the NASA TESS mission. However, this spacecraft only looked for 27 days at each star. A hint to a transit – the dimming of light as a planet passes in front of its star from our viewpoint – was spotted for each star. During its extended mission, TESS revisited these stars and the same transit was seen again, implying the existence of planets.

Scientists calculated the most likely orbital periods and pointed Cheops at the same stars at the time they expected the planets to transit. During this hit-or-miss procedure Cheops was able to measure a transit for each of the exoplanets, confirming their existence, discovering their true orbital periods and taking the next step in their characterisation.

The four newly discovered planets have orbits between 21 and 53 days around four different stars. Their discovery is essential because it brings our sample of known exoplanets closer to the longer orbits that we find in our own Solar System.

One of the outstanding questions about mini-Neptunes is what they are made of. Astronomers predict that they have an iron-rocky core with thick outer layers of lighter material. Different theories predict different outer layers: Do they have deep oceans of liquid water, a puffy hydrogen and helium atmosphere or an atmosphere of pure water vapour?

Discovering the composition of mini-Neptunes is important to understand the formation history of this type of planet. Water-rich mini-Neptunes probably formed far out in the icy regions of their planetary system before migrating inwards, while combinations of rock and gas would tell us that these planets stayed in the same place as they formed.

The new Cheops measurements helped determine the radius of the four exoplanets, while their mass could be determined using observations from ground-based telescopes. Combining the mass and radius of a planet gives an estimate of its overall density.

The density can only give a first estimate of the mass of the iron-rocky core. While this new information about the density is an important step forward in understanding mini-Neptunes, it does not contain enough information to offer a conclusion for the outer layers.

The four newly confirmed exoplanets orbit bright stars, which make them the perfect candidates for a follow-up visit by the NASA/ESA/CSA James Webb Space Telescope or ESA’s future Ariel mission. These spectroscopic missions could discover what their atmospheres contain and provide a definitive answer to the composition of their outer layers.

A full characterisation is needed to understand how these bodies formed. Knowing the composition of these planets will tell us by what mechanism they formed in early planetary systems. This in turn helps us better understand the origins and evolution of our own Solar System.

The results were published in four papers: ‘Refined parameters of the HD 22946 planetary system and the true orbital period of the planet d’ by Z. Garai et al. is published in Astronomy & Astrophysics. https://www.aanda.org/10.1051/0004-6361/202345943

‘Two Warm Neptunes transiting HIP 9618 revealed by TESS & Cheops’ by H. P. Osborn et al. is published in the Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stad1319

‘TESS and CHEOPS Discover Two Warm Sub-Neptunes Transiting the Bright K-dwarf HD15906’ by A. Tuson et al. is published in the Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stad1369

‘TOI-5678 b: a 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS’ by S. Ulmer-Moll et al. is published in Astronomy & Astrophysics. https://www.aanda.org/10.1051/0004-6361/202245478

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      NASA Explores Industry, Partner Interest in Using VIPER Moon Rover
      NASA’s VIPER robotic Moon rover is seen here in a clean room at NASA’s Johnson Space Center in Houston. NASA/Helen Arase Vargas As part of its commitment to a robust, sustainable lunar exploration program for the benefit of all, NASA issued a Request for Information Friday to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER Moon rover.
      VIPER, short for Volatiles Investigating Polar Exploration Rover, was designed to map the location and concentration of potential off-planet resources, like ice, on the South Pole of Earth’s Moon. NASA announced July 17 its intent to discontinue VIPER, and to pursue alternative methods to verify the presence of frozen water at the lunar South Pole, but could contribute the VIPER rover as-is to an interested partner.
      From July 17 to Aug. 1, NASA accepted expressions of interest from the broader community in using the existing VIPER rover system. The Request for Information now seeks to learn more about how interested parties would use VIPER at minimal to no cost to the government. This Request for Information is open to U.S. organizations and industry. NASA will explore interest from the international community through separate channels. 
      “NASA thanks everyone who provided expressions of interest in using VIPER and looks forward to learning more about how potential partners envision accomplishing NASA’s science and exploration goals with the rover,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “We want to make the best use possible of the engineering, technology, and expertise that have been developed by this project to advance scientific knowledge of the Moon. Partnership opportunities on VIPER would allow us to do this without impacting our future cadence of commercial deliveries to the Moon, to continue lunar science and exploration for everyone’s benefit.”
      Future CLPS (Commercial Lunar Payload Services) deliveries to the lunar surface and instruments on NASA’s crewed missions will progress the agency’s assessment of volatiles across the South Pole region.
      The Request for Information is available online and will remain open for responses until 11:59 p.m. EDT Monday, Sep. 2.
      For more information about VIPER, visit:
      https://www.nasa.gov/viper
      Media contacts
      Alise Fisher / Erin Morton
      Headquarters, Washington
      202-358-2546 / 202-805-9393
      alise.m.fisher@nasa.gov / erin.morton@nasa.gov
      Share








      Details
      Last Updated Aug 09, 2024 Related Terms
      Commercial Lunar Payload Services (CLPS) Earth’s Moon VIPER (Volatiles Investigating Polar Exploration Rover) Explore More
      4 min read NASA, JAXA Bounce Laser Beam Between Moon’s Surface and Lunar Orbit


      Article


      2 weeks ago
      3 min read New Evidence Adds to Findings Hinting at Network of Caves on Moon
      An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered…


      Article


      3 weeks ago
      5 min read What’s Up: April 2024 Skywatching Tips from NASA
      Catch Mars and Saturn rising, and Jupiter hangs out with Comet 12P. Plus NASA has…


      Article


      4 months ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept shows how NASA’s Curiosity Mars rover was lowered to the planet’s surface using the sky crane maneuver.NASA / JPL-Caltech The rocket-powered descent stage that lowered NASA’s Curiosity onto the Martian surface is guided over the rover by technicians at the agency’s Kennedy Space Center in September 2011, two months before the mission’s launch. NASA/Kim Shiflett Twelve years ago, NASA landed its six-wheeled science lab using a daring new technology that lowers the rover using a robotic jetpack.
      NASA’s Curiosity rover mission is celebrating a dozen years on the Red Planet, where the six-wheeled scientist continues to make big discoveries as it inches up the foothills of a Martian mountain. Just landing successfully on Mars is a feat, but the Curiosity mission went several steps further on Aug. 5, 2012, touching down with a bold new technique: the sky crane maneuver.
      A swooping robotic jetpack delivered Curiosity to its landing area and lowered it to the surface with nylon ropes, then cut the ropes and flew off to conduct a controlled crash landing safely out of range of the rover.
      Of course, all of this was out of view for Curiosity’s engineering team, which sat in mission control at NASA’s Jet Propulsion Laboratory in Southern California, waiting for seven agonizing minutes before erupting in joy when they got the signal that the rover landed successfully.
      Encased in its aeroshell, NASA’s Curiosity rover descended through the Martian atmosphere on a parachute on Aug. 5, 2012. The scene was captured from far above by the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter.NASA/JPL-Caltech/University of Arizona This was one of the first images sent back by NASA’s Curiosity Mars rover after landing on Aug. 5, 2012. It was taken by the one of the hazard-avoidance camera on the rover’s left-rear side.NASA/JPL-Caltech The sky crane maneuver was born of necessity: Curiosity was too big and heavy to land as its predecessors had — encased in airbags that bounced across the Martian surface. The technique also added more precision, leading to a smaller landing ellipse.
      During the February 2021 landing of Perseverance, NASA’s newest Mars rover, the sky crane technology was even more precise: The addition of something called terrain relative navigation enabled the SUV-size rover to touch down safely in an ancient lake bed riddled with rocks and craters.
      Watch as NASA’s Perseverance rover lands on Mars in 2021 with the same sky crane maneuver Curiosity used in 2012.
      Credit: NASA/JPL-Caltech Evolution of a Mars Landing
      JPL has been involved in NASA’s Mars landings since 1976, when the lab worked with the agency’s Langley Research Center in Hampton, Virginia, on the two stationary Viking landers, which touched down using expensive, throttled descent engines.
      How We Land on Mars For the 1997 landing of the Mars Pathfinder mission, JPL proposed something new: As the lander dangled from a parachute, a cluster of giant airbags would inflate around it. Then three retrorockets halfway between the airbags and the parachute would bring the spacecraft to a halt above the surface, and the airbag-encased spacecraft would drop roughly 66 feet (20 meters) down to Mars, bouncing numerous times — sometimes as high as 50 feet (15 meters) — before coming to rest.
      The entry, descent, and landing team for NASA’s Curiosity Mars rover celebrates the spacecraft’s touchdown on Aug. 5, 2012. Al Chen, who was part of the team, is at right.Curiosity Landing Team Celebrates It worked so well that NASA used the same technique to land the Spirit and Opportunity rovers in 2004. But that time, there were only a few locations on Mars where engineers felt confident the spacecraft wouldn’t encounter a landscape feature that could puncture the airbags or send the bundle rolling uncontrollably downhill.
      “We barely found three places on Mars that we could safely consider,” said JPL’s Al Chen, who had critical roles on the entry, descent, and landing teams for both Curiosity and Perseverance.
      It also became clear that airbags simply weren’t feasible for a rover as big and heavy as Curiosity. If NASA wanted to land bigger spacecraft in more scientifically exciting locations, better technology was needed.
      Rover on a Rope
      In early 2000, engineers began playing with the concept of a “smart” landing system. New kinds of radars had become available to provide real-time velocity readings — information that could help spacecraft control their descent. A new type of engine could be used to nudge the spacecraft toward specific locations or even provide some lift, directing it away from a hazard. The sky crane maneuver was taking shape.
      JPL Fellow Rob Manning worked on the initial concept in February 2000, and he remembers the reception it got when people saw that it put the jetpack above the rover rather than below it.
      “People were confused by that,” he said. “They assumed propulsion would always be below you, like you see in old science fiction with a rocket touching down on a planet.”
      Manning and colleagues wanted to put as much distance as possible between the ground and those thrusters. Besides stirring up debris, a lander’s thrusters could dig a hole that a rover wouldn’t be able to drive out of. And while past missions had used a lander that housed the rovers and extended a ramp for them to roll down, putting thrusters above the rover meant its wheels could touch down directly on the surface, effectively acting as landing gear and saving the extra weight of bringing along a landing platform.
      But engineers were unsure how to suspend a large rover from ropes without it swinging uncontrollably. Looking at how the problem had been solved for huge cargo helicopters on Earth (called sky cranes), they realized Curiosity’s jetpack needed to be able to sense the swinging and control it.
      “All of that new technology gives you a fighting chance to get to the right place on the surface,” said Chen.
      Best of all, the concept could be repurposed for larger spacecraft — not only on Mars, but elsewhere in the solar system. “In the future, if you wanted a payload delivery service, you could easily use that architecture to lower to the surface of the Moon or elsewhere without ever touching the ground,” said Manning.
      More About the Mission
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more about Curiosity, visit:
      science.nasa.gov/mission/msl-curiosity
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2024-104
      Share
      Details
      Last Updated Aug 07, 2024 Related Terms
      Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
      2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 
      NASA tech adds gecko grip to phone accessory
      Article 1 day ago 6 min read Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields
      Magnetic fields are everywhere in our solar system. They originate from the Sun, planets, and…
      Article 1 day ago 4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization
      NASA’s Universe of Learning – a partnership among the Space Telescope Science Institute (STScI), Caltech/IPAC,…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Bindu Rani had childhood dreams of flight. Today she lifts her gaze even higher, helping researchers study stars, planets beyond our solar system, and black holes billions of times more massive than our Sun.
      Name: Bindu Rani
      Title: Astrophysicist, Neil Gehrels Swift Observatory Guest Investigator Program Lead Scientist
      Organization: Astroparticle Physics Laboratory, Science Directorate (Code 661)
      Bindu Rani is an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md.Photo credit: NASA/Jay Friedlander What do you do and what is most interesting about your role here at Goddard?
      I study supermassive black holes using both space-based and ground-based observations. I love trying to understand the dynamics and nature of physical processes that happen in the vicinity of a black hole.
      Why did you become an astrophysicist?
      When I was a little girl, I wanted to fly way up in the sky and be a pilot. When I was doing my master’s, I got interested in black holes and neutron stars. I was so fascinated that I decided to pursue this field.
      What is your educational background?
      In 2005, I got a bachelor’s degree in science from Government College Bahadurgarh, India. In 2007, I got a master’s degree in in physics from the Department of Physics and Astrophysics, Delhi University, India. In 2013, I got a doctorate in astrophysics from the Max Planck Institute for Radio Astronomy, Bonn, Germany. From 2014 to 2016, I was a post-doctoral fellow at Max Plank.
      How did you come to Goddard?
      In 2016, I came to Goddard through NASA’s Postdoctoral Fellowship program.
      From 2020 to 2022, I worked at the Korea Astronomy and Space Science Institute in South Korea as a staff scientist. I can say please and thank you in Korean, but everyone in the lab and the young students spoke English and loved practicing English.
      In September 2022, I returned to Goddard as the Swift Guest Investigator Program lead scientist.
      You have lived in India, South Korea, Germany, and now the United States. What are your favorite aspects of each country?
      The best thing about India is that my family is there, and I deeply miss them. All my happy memories are in one small town along with my parents, siblings, and friends. I deeply miss Indian food too. My family and I visit India whenever we can.
      I love South Korean food. What motivated me in the mornings was their delicious coffee and cafeteria food. I miss their culture, so warm and welcoming. When I left, there was a hole in my heart.
      Life in Germany is amazing. They have the best work life balance. Also, I miss German bread and beer.
      What are your goals as the Swift Guest Investigator Program lead?
      I lead the program, including managing the proposals, staffing the program, conducting reviews, and supporting the users. Swift is an amazing mission because it provides X-rays and ultraviolet to optical observations of all different kinds of astronomical objects including exoplanets, stars, dwarf stars, and black holes up to millions to billions of solar masses.
      How do you keep your people motivated?
      Our work is super interesting which itself is motivating. My idea is that if you want the best out of people, you have to make them comfortable. I try to apply this both at work and at home.
      “Most of my inspiration comes from my own curiosity and from the fact that I am very determined,” said Bindu.Photo courtesy of Bindu Rani How do you feel when you discover a black hole?
      Swift observes radiation from many black holes ranging in size from a few solar masses (that is, a few times the mass of our Sun) to billions of solar masses. In the vicinity of black holes, infalling material heats up and emits radiation. In some cases, black holes consuming dust and gas at the center of galaxies produce jets — a laser-like beam of light that we observe with our telescopes.
      When we have a new discovery, it is very exciting, and many observations follow using many different ground and space telescopes. For example, the brightest of all time gamma-ray burst (BOAT GRB), which is likely the birth cry of a new black hole, was jointly discovered by Swift and the Fermi Gamma-ray Space Telescope on Oct. 9, 2022. It was subsequently observed by about 50 space- and ground-based telescopes.
      What is the most amazing observation you have seen from a black hole?
      Black holes are extremely fascinating astronomical objects to study and to test our theoretical models in extreme gravity environments. I believe the most amazing observation is the first image of a black hole itself. In 2019, the first direct image of a black hole at the center of galaxy M87 confirmed the existence of black holes, marking a historic milestone in astrophysics.
      Who inspires you?
      Most of my inspiration comes from my own curiosity and from the fact that I am very determined. My family is my true inspiration, especially my parents. They were motivating in many different ways. My parents are really hard working. They are very proud of me.
      What do you say to the people you mentor?
      I tell them to keep learning, to enjoy what they are doing even if it feels hard. I them to stay curious. I also tell them to strengthen their speaking, writing and coding skills to become a good scientists. As my doctorate advisor told me, you have to learn how to sell yourself.
      As an avid reader, who is your favorite author?
      Books bring me peace. I enjoy reading books in Hindi, by an Indian author called Munsi Prem Chand, who wrote about social fiction. I am currently reading Laura Markam’s “Peaceful Parents, Happy Kids” because I have a young child.
      What else do you do to relax?
      I like to run and practice yoga. Mostly either I work or spend time with my child.
      What is it like for both you and your husband to both work at Goddard?
      My husband, Pankaj Kumar, is a heliophysicist in the Space Weather Laboratory (Code 674). We met in India, and both found jobs at Goddard. It is so wonderful to be at the same working institute. At home, we try not to discuss work. But our child is very curious and asks us a lot of questions about our research. Our child wants to become a NASA scientist, which he calls a NASA professor.
      What do you value most about working at Goddard?
      Goddard has the best work culture. Everyone is so open and friendly. I can just knock on any door and will be able to talk. The open communication puts you at ease.
      Also, Goddard has a lot of women researchers in lead positions. Goddard values women.
      How do you describe yourself?
      I am a girl who came from a small village in India and am now at Goddard. I dreamed about going to space one day and now I am doing research at Goddard. My family’s support mattered. My own strong-willed nature helped too. At this stage, my curiosity and love of challenges continues to motivate me. Several factors in my life got me to where I am.
      Who do you want to thank?
      I am grateful to the people who believed in me (my family, friends, and colleagues) as well as those who tried to hinder me.
      What’s your “big dream”?
      I want to be an astronaut. When I was doing my master’s, I became interested in being an astronaut.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Aug 06, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      6 min read There Are No Imaginary Boundaries for Dr. Ariadna Farrés-Basiana
      Article 4 days ago 6 min read Rebekah Hounsell: Tracking Cosmic Light to Untangle the Universe’s Darkest Mysteries
      Article 3 weeks ago 7 min read Bente Eegholm: Ensuring Space Telescopes Have Stellar Vision
      Article 1 month ago View the full article
    • By USH
      On 2024-04-27 the Chemcam onboard NASA's Mars rover Curiosity captured an intriguing image depicting a mysterious mask adorning a sizable rock on the Martian surface. 

      The mask appears to defy natural origins, bearing the hallmark of artificial craftsmanship and deliberate placement upon the rock. 

      Is the mask part of an ancient statue, or does it stand alone? What significance might its placement hold, could it represent a sacred relic from an ancient civilization that once inhabited the planet or might the mask serve as a homage to an ancient deity? 
      Yet, who created this mask?

      Links: SOL 4168: https://mars.nasa.gov/raw_images/1326548/ SOL 4168: https://mars.nasa.gov/raw_images/1326546/ Gigapan Neville Thompson: http://www.gigapan.com/gigapans/234695 View the full article
    • By European Space Agency
      Video: 00:21:52 Rosemary Coogan, one of ESA’s five astronaut candidates currently undergoing basic astronaut training at the European Astronaut Centre in Cologne, Germany, shares her journey from studying the stars to training for space travel. Join us as we discuss her experiences in astronaut training, her favorite lessons, and her excitement for the future of space exploration.
      This is Episode 4 of our ESA Explores podcast series introducing the ESA astronaut class of 2022, recorded in November 2023.
      Music and audio editing by Denzel Lorge. Cover art by Gaël Nadaud.
      Access all ESA Explores podcasts.
      View the full article
  • Check out these Videos

×
×
  • Create New...