Members Can Post Anonymously On This Site
Cheops explores mysterious warm mini-Neptunes
-
Similar Topics
-
By USH
The ongoing mystery surrounding recent drone sightings has become increasingly complex, with conflicting reports making it difficult to draw definitive conclusions. However, a new and intriguing element has emerged alongside these drones sightings: numerous accounts of mysterious orbs, potentially of alien origin, flying at both low and high altitudes.
Reports of mysterious orbs have been increasing in recent weeks. These orbs have been sighted at both high altitudes and closer to urban areas.
Orb sighting over New Jersey on December 17, 2024Watch video UFO Sightings Daily
Pilots have reported encounters to air traffic control. Listen to conversations between pilots and traffic control.
And a passenger aboard United Airlines flight UA2359 from Chicago to Newark recently captured footage of these mysterious orbs. The video, shared online by the user “EasilyAmusedEE” on December 16, 2024, shows objects at altitudes between 40,000 and 50,000 feet—far beyond the capabilities of consumer drones. The footage was reportedly taken using an iPhone 16 Pro Max.
Video plane passenger films unknown orbs.
About the drone sightings: Meanwhile, eyewitness accounts describe these so-called drones as crafts that emit no noise, suggesting advanced technology. Additionally, there are claims that these crafts seem to intentionally draw attention, as they have reportedly interfered with cars (lamps flickering), electronics, streetlights (lamps flickering), and even fully charged batteries, which are said to be instantly drained in their presence.
Video shows among other (drone/orb) sightings, cars lamps flickering, streetlights lamps flickering, fully charged batteries drained.
This surge in Orb sightings raises more questions. Are these orbs extraterrestrial in origin? Could they be deliberately associated with the drone phenomena, or is their timing coincidental? Some suggest the possibility of a false flag operation, hinting at a deeper and potentially misleading agenda by the U.S. government.
Whether these drones and Orbs sightings point to advanced human technology, extraterrestrial activity, or a mix of both, one thing is clear: there is something significant going on.View the full article
-
By European Space Agency
Video: 00:04:04 English Paxi explores ice
Join Paxi on an adventure to the North and South poles, to learn more about ice and its role in keeping Earth cool.
Italian Paxi osserva il ghiaccio
Unisciti a Paxi in un'avventura ai poli Nord e Sud, per saperne di più sul ghiaccio e sul suo ruolo nel mantenere la Terra fresca.
German Paxi erforscht das Eis
Begleiten Sie Paxi auf ein Abenteuer zum Nord- und Südpol, um mehr über Eis und seine Rolle bei der Kühlung der Erde zu erfahren.
French Paxi explore la glace
Rejoignez Paxi dans une aventure aux pôles Nord et Sud, pour en savoir plus sur la glace et son rôle dans le refroidissement de la Terre.
Spanish Paxi explora el hielo
Únete a Paxi en una aventura a los polos Norte y Sur, para aprender más sobre el hielo y su papel en mantener la Tierra fría.
Portuguese Paxi explora o gelo
Junte-se a Paxi numa aventura aos pólos Norte e Sul, para aprender mais sobre o gelo e o seu papel na manutenção da Terra fresca.
Greek Ο Πάξι εξερευνά τον πάγο
Ελάτε μαζί με τον Paxi σε μια περιπέτεια στο Βόρειο και το Νότιο Πόλο, για να μάθετε περισσότερα για τον πάγο και το ρόλο του στη διατήρηση της ψύξης της Γης.
Polish Paxi bada lód
Dołącz do Paxi podczas przygody na biegunie północnym i południowym, aby dowiedzieć się więcej o lodzie i jego roli w chłodzeniu Ziemi.
Swedish Paxi utforskar is
Följ med Paxi på ett äventyr till Nord- och Sydpolen för att lära dig mer om is och dess roll för att hålla jorden sval.
Norwegian Paxi utforsker is
Bli med Paxi på et eventyr til Nord- og Sydpolen for å lære mer om is og dens rolle i å holde jorden kjølig.
Danish Paxi udforsker is
Tag med Paxi på eventyr til Nord- og Sydpolen for at lære mere om is og dens rolle i at holde Jorden kølig.
Romanian Paxi explorează gheață
Alăturați-vă lui Paxi într-o aventură la polii Nord și Sud, pentru a afla mai multe despre gheață și rolul său în menținerea Pământului rece.
Finnish Paxi tutkii jäätä
Lähde Paxin mukaan seikkailulle pohjois- ja etelänavoille ja opi lisää jäästä ja sen roolista maapallon viileänä pitämisessä.
Estonian Paxi avastab jääd
Liitu Paxiga seiklusel põhja- ja lõunapoolusele, et õppida rohkem jääst ja selle rollist Maa jahedana hoidmisel.
Czech Paxi zkoumá led
Vydejte se s Paxi na dobrodružnou výpravu na severní a jižní pól, abyste se dozvěděli více o ledu a jeho úloze při udržování chladu na Zemi.
Dutch Paxi onderzoekt ijs
Ga mee met Paxi op avontuur naar de Noord- en Zuidpool om meer te leren over ijs en de rol die ijs speelt bij het koel houden van de aarde.
View the full article
-
By USH
A rare and intriguing phenomenon has been observed in China. On the night of October 27th, Chinese astrophotographer Shengyu Li set up his camera to capture star trails over Mount Xiannairi in Sichuan Province. To his surprise, he recorded mysterious blue flashes accompanying an avalanche.
The exact cause of these "blue lights" remains unclear, sparking various theories. Some speculate they could stem from geomagnetic activity, interactions of cosmic rays in the upper atmosphere, or rare atmospheric phenomena like blue jets or elves. However, Li offers another explanation: the flashes might result from triboluminescence—light produced by friction during ice fragmentation.
Triboluminescence occurs when certain materials emit light as they are fractured, scratched, or rubbed. This phenomenon happens due to the breaking of chemical bonds or the sudden separation of surfaces, which generates electrical charges. These charges can ionize the surrounding air or excite the material itself, creating visible light.
The hypothesis suggests that this event could be an example of triboluminescence. However, it also raises the intriguing possibility of a connection to UFO phenomena, such as orbs or other unexplained lights that have been observed around the world over the years.
Hypothesis: The sighting depicts what appears to be a blue light descending onto a snowbank, following the avalanche as it moves downward, and then vanishing before seemingly ascending again.
Did the avalanche trigger the blue light, or did the blue light crash into the snow, causing the avalanche?
Whether this phenomenon is a rare case of triboluminescence, potentially the first instance of it being captured on camera or something linked to unexplained UFO activity, the recording of this light remains a unique and fascinating occurrence. View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Use your mouse to explore this 360-degree view of Gediz Vallis channel, a region of Mars that NASA’s Curiosity rover surveyed before heading west to new adventures. NASA/JPL-Caltech/MSSS The rover captured a 360-degree panorama before leaving Gediz Vallis channel, a feature it’s been exploring for the past year.
NASA’s Curiosity rover is preparing for the next leg of its journey, a monthslong trek to a formation called the boxwork, a set of weblike patterns on Mars’ surface that stretches for miles. It will soon leave behind Gediz Vallis channel, an area wrapped in mystery. How the channel formed so late during a transition to a drier climate is one big question for the science team. Another mystery is the field of white sulfur stones the rover discovered over the summer.
Curiosity imaged the stones, along with features from inside the channel, in a 360-degree panorama before driving up to the western edge of the channel at the end of September.
The rover is searching for evidence that ancient Mars had the right ingredients to support microbial life, if any formed billions of years ago, when the Red Planet held lakes and rivers. Located in the foothills of Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain, Gediz Vallis channel may help tell a related story: what the area was like as water was disappearing on Mars. Although older layers on the mountain had already formed in a dry climate, the channel suggests that water occasionally coursed through the area as the climate was changing.
Scientists are still piecing together the processes that formed various features within the channel, including the debris mound nicknamed “Pinnacle Ridge,” visible in the new 360-degree panorama. It appears that rivers, wet debris flows, and dry avalanches all left their mark. The science team is now constructing a timeline of events from Curiosity’s observations.
NASA’s Curiosity captured this panorama using its Mastcam while heading west away from Gediz Vallis channel on Nov. 2, 2024, the 4,352nd Martian day, or sol, of the mission. The Mars rover’s tracks across the rocky terrain are visible at right.NASA/JPL-Caltech/MSSS The science team is also trying to answer some big questions about the sprawling field of sulfur stones. Images of the area from NASA’s Mars Reconnaissance Orbiter (MRO) showed what looked like an unremarkable patch of light-colored terrain. It turns out that the sulfur stones were too small for MRO’s High-Resolution Imaging Science Experiment (HiRISE) to see, and Curiosity’s team was intrigued to find them when the rover reached the patch. They were even more surprised after Curiosity rolled over one of the stones, crushing it to reveal yellow crystals inside.
Science instruments on the rover confirmed the stone was pure sulfur — something no mission has seen before on Mars. The team doesn’t have a ready explanation for why the sulfur formed there; on Earth, it’s associated with volcanoes and hot springs, and no evidence exists on Mount Sharp pointing to either of those causes.
“We looked at the sulfur field from every angle — from the top and the side — and looked for anything mixed with the sulfur that might give us clues as to how it formed. We’ve gathered a ton of data, and now we have a fun puzzle to solve,” said Curiosity’s project scientist Ashwin Vasavada at NASA’s Jet Propulsion Laboratory in Southern California.
NASA’s Curiosity Mars rover captured this last look at a field of bright white sulfur stones on Oct. 11, before leaving Gediz Vallis channel. The field was where the rover made the first discovery of pure sulfur on Mars. Scientists are still unsure exactly why theses rocks formed here. Spiderwebs on Mars
Curiosity, which has traveled about 20 miles (33 kilometers) since landing in 2012, is now driving along the western edge of Gediz Vallis channel, gathering a few more panoramas to document the region before making tracks to the boxwork.
Viewed by MRO, the boxwork looks like spiderwebs stretching across the surface. It’s believed to have formed when minerals carried by Mount Sharp’s last pulses of water settled into fractures in surface rock and then hardened. As portions of the rock eroded away, what remained were the minerals that had cemented themselves in the fractures, leaving the weblike boxwork.
On Earth, boxwork formations have been seen on cliffsides and in caves. But Mount Sharp’s boxwork structures stand apart from those both because they formed as water was disappearing from Mars and because they’re so extensive, spanning an area of 6 to 12 miles (10 to 20 kilometers).
Scientists think that ancient groundwater formed this weblike pattern of ridges, called boxwork, that were captured by NASA’s Mars Reconnaissance Orbiter on Dec. 10, 2006. The agency’s Curiosity rover will study ridges similar to these up close in 2025.NASA/JPL-Caltech/University of Arizona This weblike crystalline structure called boxwork is found in the ceiling of the Elk’s Room, part of Wind Cave National Park in South Dakota. NASA’s Curiosity rover is preparing for a journey to a boxwork formation that stretches for miles on Mars’ surface. “These ridges will include minerals that crystallized underground, where it would have been warmer, with salty liquid water flowing through,” said Kirsten Siebach of Rice University in Houston, a Curiosity scientist studying the region. “Early Earth microbes could have survived in a similar environment. That makes this an exciting place to explore.”
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems (formerly Ball Aerospace & Technologies Corp.), in Boulder, Colorado. JPL manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate in Washington.
For more about these missions:
science.nasa.gov/mission/msl-curiosity
science.nasa.gov/mission/mars-reconnaissance-orbiter
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-160
Share
Details
Last Updated Nov 18, 2024 Related Terms
Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Explore More
4 min read Precision Pointing Goes the Distance on NASA Experiment
Article 4 days ago 5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
Article 4 days ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Buckle Up: NASA-Funded Study Explores Turbulence in Molecular Clouds
This image shows the distribution of density in a simulation of a turbulent molecular cloud. NASA/E. Scannapieco et al (2024) On an airplane, motions of the air on both small and large scales contribute to turbulence, which may result in a bumpy flight. Turbulence on a much larger scale is important to how stars form in giant molecular clouds that permeate the Milky Way.
In a new NASA-funded study in the journal Science Advances, scientists created simulations to explore how turbulence interacts with the density of the cloud. Lumps, or pockets of density, are the places where new stars will be born. Our Sun, for example, formed 4.6 billion years ago in a lumpy portion of a cloud that collapsed.
“We know that the main process that determines when and how quickly stars are made is turbulence, because it gives rise to the structures that create stars,” said Evan Scannapieco, professor of astrophysics at Arizona State University and lead author of the study. “Our study uncovers how those structures are formed.”
Giant molecular clouds are full of random, turbulent motions, which are caused by gravity, stirring by the galactic arms and winds, jets, and explosions from young stars. This turbulence is so strong that it creates shocks that drive the density changes in the cloud.
The simulations used dots called tracer particles to traverse a molecular cloud and travel along with the material. As the particles travel, they record the density of the part of the cloud they encounter, building up a history of how pockets of density change over time. The researchers, who also included Liubin Pan from Sun Yat Sen University in China, Marcus Brüggen from the University of Hamburg in Germany, and Ed Buie II from Vassar College in Poughkeepsie, New York, simulated eight scenarios, each with a different set of realistic cloud properties.
This animation shows the distribution of density in a simulation of a turbulent molecular cloud. The colors represent density, with dark blue indicating the least dense regions and red indicating the densest regions. Credit: NASA/E. Scannapieco et al (2024) The team found that the speeding up and slowing down of shocks plays an essential role in the path of the particles. Shocks slow down as they go into high-density gas and speed up as they go into low-density gas. This is akin to how an ocean wave strengthens when it hits shallow water by the shore.
When a particle hits a shock, the area around it becomes more dense. But because shocks slow down in dense regions, once lumps become dense enough, the turbulent motions can’t make them any denser. These lumpiest high-density regions are where stars are most likely to form.
While other studies have explored molecular cloud density structures, this simulation allows scientists to see how those structures form over time. This informs scientists’ understanding of how and where stars are likely to be born.
“Now we can understand better why those structures look the way they do because we’re able to track their histories,” said Scannapieco.
This image shows part of a simulation of a molecular cloud. The colors represent density, with dark blue indicating the least dense regions and red indicating the densest regions. Tracer particles, represented by black dots, traverse the simulated cloud. By examining how they interact with shocks and pockets of density, scientists can better understand the structures in molecular clouds that lead to star formation. NASA/E. Scannapieco et al (2024) NASA’s James Webb Space Telescope is exploring the structure of molecular clouds. It is also exploring the chemistry of molecular clouds, which depends on the history of the gas modeled in the simulations. New measurements like these will inform our understanding of star formation.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.