Members Can Post Anonymously On This Site
NASA Names Winners of 2023 Student Rocket Launch Competition
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
“It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
“This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.
Share
Details
Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By NASA
NASA-supported scientists have suggested an updated framework for the role of ferns in environmental recovery from disaster. Instead of competing with other organisms, ferns may act as facilitators that ease the way for other plants and animals to re-establish themselves in a damaged landscape.
The study examines how a biosphere recovers from major upheaval, be it from wildfires or asteroid impacts, using what scientists call a ‘facilitative’ framework (where the actions of organisms help each other) rather than the long-held ‘competition-based’ framework.
NASA supported researchers at a fossil plant quarry near the Old Raton Pass Cretaceous–Paleogene (K-Pg) boundary in New Mexico.Ellen Currano Ferns are a common type of vascular plant found in woodlands, gardens, and many a plant pot on apartment shelves. Unlike many other vascular plants, ferns do not flower or seed. Instead, they reproduce via spores. Ferns first appeared on Earth some 360 million years ago during the Devonian period and, prior to the evolution of flowering plants, were the most common vascular plant on Earth.
Ferns are often one of the first plants to re-establish in areas affected by large-scale upheaval events, and it has been suggested that this is because ferns produce spores in great amounts that are widely distributed on the wind. Some scientists, particularly in the fields of geology and paleontology, have used this ‘competitive’ success of ferns as a foundation for ecological theories about how recolonization happens after upheavals.
However, in recent years, growing research has shown that recovery is not only about competition. Positive interactions, known as facilitation, between ferns and other species also play a significant role. The authors of the recent study believe that it is time to re-examine positive interactions within ecosystems, rather than defaulting to a competition framework.
Ferns in History
“I love to imagine ecosystems through time and play a game in my head where I ask myself, ’if I could stand here for 1 million years, would this fossilize?’” said lead author Lauren Azevedo Schmidt of the University of California at Davis. “Because of the mental time gymnastics I do, my research questions follow the same pathway. How do I create synergy between modern and paleo research?”
Early Paleocene fern fossil discovered on the Vermejo Park Ranch, NM. Photo by Ellen Currano.Ellen Currano The team examined ideas that have been developed based on observing modern organisms as well as ancient populations in the fossil record. They propose that, rather than out-competing other species, ferns act as facilitators for ecosystem recovery by stabilizing the ground, enhancing properties of the soil, and mediating competition between other organisms. This repositions ferns as facilitators of ecological recovery within disturbed habitats. This has broad implications for understanding how a community recovers and the importance of positive interactions following disturbance events. Because ferns are among the oldest lineages of plants on Earth and have experienced unimaginable climates and extinction events, they provide critical information to better understand the fossil record and Earth before humans.
Fossil plant excavation in the Cretaceous rocks just below the K-Pg boundary at Old Raton Pass, NM. Photo by Ellen Currano.Ellen Currano “The Cretaceous – Paleogene [K-Pg] extinction event reworked Earth’s biosphere, resulting in approximately 75% of species going extinct, with up to 90% of plants going extinct,” said Azevedo Schmidt. “This magnitude of devastation is something humans (luckily) have never had to deal with, making it hard to even think about. But it is something we must consider when tackling research/issues surrounding exobiology.”
The longevity of ferns on Earth provides a view into the evolution of life on Earth, even through some of the planet’s most devastating disasters. This is of interest to astrobiology and exobiology because exploring how environmental factors can and have impacted the large-scale evolution of life on Earth through mass extinctions and mass radiation events can help us understand the potential for the origin, evolution and distribution for life elsewhere in the Universe.
Ferns in Space
In addition to their relevance to astrobiology, the resilience of ferns and their ability to help heal a damaged environment could also make them important partners for future human missions in space. NASA’s Space Biology program has supported experiments to study how plants adapt to space with the expectation that knowledge gained can lead to ways by which crops can be cultivated for fresh food. Lessons learned from studying resilient plants, such as ferns, could guide efforts to make crops adapt better to harsh space conditions so they can serve as a reliable food source as humans explore destinations beyond our planet. Previous studies have also looked at how plants might keep air clean in enclosed spaces like the International Space Station or in habitats on the Moon or Mars.
NASA supported scientists can be seen prospecting for plant fossils in Berwind Canyon, CO. Photo by Ellen Currano.Ellen Currano “Ferns were able to completely transform Earth’s biosphere following the devastation of the K-Pg [Cretaceous–Paleogene] extinction event. The environment experienced continental-scale fires, acid rain, and nuclear winter, but ferns were able to tolerate unbelievable stress and make their environment better,” says Azevedo Schmidt. “I think we can all learn something from the mighty ferns.”
The study, “Ferns as facilitators of community recovery following biotic upheaval,” was published in the journal BioScience [doi:10.1093/biosci/biae022]
For more information on NASA’s Astrobiology program, visit:
https://www.science.nasa.gov/astrobiology
-end-
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Explore More
2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
Article 1 month ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
Article 2 months ago 5 min read NASA: New Insights into How Mars Became Uninhabitable
Article 2 months ago Share
Details
Last Updated Dec 20, 2024 Related Terms
Astrobiology View the full article
-
By NASA
Official portrait of Carlos Garcia-Galan, deputy manager for the Gateway Program.NASA/Bridget Caswell NASA has selected Carlos Garcia-Galan as deputy manager for the Gateway Program. Garcia-Galan previously served as manager of the Orion Program’s European Service Module Integration Office at Glenn Research Center.
“I am tremendously excited to take on this new role and help lead development of humanity’s first outpost in deep space,” Garcia-Galan said. “I’m honored to join a top-class Gateway team around the world, as the first elements of the complex move toward completion.”
Garcia-Galan brings more than 27 years of human spaceflight experience to the role. A native of Malaga, Spain, his career includes supporting assembly of the International Space Station as a flight controller in Houston and Korolev, Russia, during multiple Space Shuttle-International Space Station assembly flights. He joined the Orion program in 2010, serving in a variety of key technical and management roles, including management of integrated spacecraft design and performance, mission analysis, cross-program integration, and launch and flight operations support.
“Carlos is an outstanding manager and engineer, and I am extremely pleased to announce his selection for this position,” said Vanessa Wyche, director of NASA’s Johnson Space Center. “His wealth of experience in human spaceflight, international partnerships, and the development and operations of deep-space spacecraft will be a huge asset to Gateway.”
While with the Orion Program, Garcia-Galan had a key role preparing the Orion team for the Artemis I mission by establishing the Orion Mission Evaluation Room (MER) concept of operations and leading the team through the Artemis I flight preparations until he transitioned into his role managing ESM integration. He later served as one of the Artemis I MER Leads supporting real-time flight operations during the successful Artemis I mission.
“Carlos brings a tremendous technical background and extensive leadership experience that will greatly benefit our program, augmenting our strong team as we progress towards deploying the lunar Gateway,” said Gateway Program Manager Jon Olansen.
Throughout his career, Garcia-Galan has been recognized for his achievements, including receiving, the Honeywell Space Systems Engineer of the Year (Houston) award, the NASA Silver Achievement Medal, the Exceptional Achievement Medal, the Johnson Space Center Director’s Commendation, the Orion Program Manager’s Commendation, and the Silver Snoopy Award.
Learn More About Gateway
@NASAGateway
@NASA_Gateway
@nasaartemis
View the full article
-
By NASA
Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near the headquarters building of the agency’s Kennedy Space Center in Florida.NASA/Ben Smegelsky As NASA’s Kennedy Space Center in Florida wraps up a year that will see more than 90 government, commercial, and private missions launch from Florida’s Space Coast, a look to 2025 shows the missions, partnerships, projects, and programs at the agency’s main launch site will continue innovating, inspiring, and pushing the boundaries of exploration for the benefit of humanity.
“The next year promises to be another exciting one at Earth’s premier spaceport,” said Kennedy Center Director Janet Petro. “We have an amazing workforce, and when we join forces with industry and our other government partners, even the sky is no limit to what we can accomplish.”
New Year, New Missions to Space Station
NASA’s Commercial Crew Program (CCP), based out of Kennedy, and its commercial partner SpaceX plan two crew rotation missions to the International Space Station: NASA’s SpaceX Crew-10 and Crew-11. This also means the return of the Crew-9 mission and later Crew-10 during 2025. CCP continues working with Boeing toward NASA certification of the company’s Starliner system for future crew rotations to the orbiting laboratory.
NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA astronauts Commander Anne McClain and Pilot Nichole Ayers. SpaceX “Operations in 2025 are a testament to NASA’s workforce carefully planning and preparing to safely execute a vital string of missions that the agency can depend on,” said Dana Hutcherson, CCP deputy program manager. “This is the 25th year of crewed operations for the space station, and we know that with every launch, we are sustaining a critical national asset and enabling groundbreaking research.”
NASA also plans several Commercial Resupply Services missions, utilizing SpaceX’s Dragon cargo spacecraft, Northrop Grumman’s Cygnus spacecraft, and the inaugural flight of Sierra Space’s cargo spaceplane, Dream Chaser. The missions will ferry thousands of pounds of supplies, equipment, and science investigations to the crew aboard the orbiting laboratory from NASA Kennedy and nearby Cape Canaveral Space Force Station.
The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station. Liftoff was at 9:29 p.m. EST. SpaceX In addition to the agency’s crewed flights, Axiom Space’s fourth crewed private spaceflight mission, Axiom Mission 4 – organized in collaboration with NASA through the International Space Station Program and operated by SpaceX – will launch to the orbital outpost.
Reestablishing Humanity’s Lunar Presence
Preparations for NASA’s Artemis II test flight mission are ramping up, with all major components for the SLS (Space Launch System) hardware undergoing processing at Kennedy, including the twin solid rocket boosters and 212-foot-tall core stage. Teams with EGS (Exploration Ground Systems) will continue stacking the booster segments inside the spaceport’s VAB (Vehicle Assembly Building). Subsequent integration and testing of the rocket’s hardware and Orion spacecraft will continue not only for the Artemis II mission, but for Artemis III and IV. Technicians also continue building mobile launcher 2, which will serve as the launch and integration platform for the SLS Block 1B configuration starting with Artemis IV.
Teams with NASA’s Exploration Ground Systems transport the agency’s 212-foot-tall SLS (Space Launch System) core stage into High Bay 2 at the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Wednesday, Dec. 11, 2024. The one-of-a kind lifting beam is designed to lift the core stage from the transfer aisle to High Bay 2 where it will remain while teams stack the two solid rocket boosters on top of mobile launcher 1 for the SLS core stage.NASA/Kim Shiflett “Looking ahead to 2025, teams will embark on a transformative year as we integrate the flight hardware for Artemis II, while simultaneously developing the foundation for future Artemis missions that will reestablish humanity’s presence on the Moon,” said Shawn Quinn, EGS program manager.
A key part of the Artemis campaign, NASA’s CLPS (Commercial Lunar Payload Services) initiative will continue leveraging commercial partnerships to quickly land scientific instruments and technology demonstrations on the Moon. Firefly Aerospace’s first lunar CLPS flight, Blue Ghost Mission 1, will carry 10 NASA science and technology instruments to the lunar surface, including the Electrodynamic Dust Shield, a technology built by Kennedy engineers. Intuitive Machines, meanwhile, will embark on its second CLPS flight to the Moon. Providing the first in-situ resource utilization demonstration on the lunar surface, IM-2 will carry the Polar Resources Ice Mining Experiment-1 (PRIME-1), which features The Regolith and Ice Drill for Exploring New Terrain from Honeybee Robotics, as well as the Mass Spectrometer Observing Lunar Operations built by Kennedy. Both flights are targeted to lift off from Kennedy’s Launch Complex 39A during the first quarter of 2025.
As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side.Firefly Aerospace In development for Artemis IV and beyond, Gateway will be a critical platform for developing a sustained human presence beyond low Earth orbit. Deep Space Logistics (DSL) is the Gateway Program project office at Kennedy responsible for leading the development of a commercial supply chain in deep space. In 2025, DSL will continue developing the framework for the DSL-1 mission and working with commercial provider SpaceX to mature spacecraft design. Upcoming milestones include a system requirements review and preliminary design review to determine the program’s readiness to proceed with the detailed design phase supporting the agency’s Gateway Program and Artemis IV mission objectives.
Science Missions Studying Our Solar System and Beyond
NASA’s Launch Services Program (LSP), based at Kennedy, is working to launch three ambitious missions. Launching early in the year on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) is a space telescope to survey the universe using visible and near-infrared light, observing more colors than ever before and allowing astronomers to piece together a three-dimensional map of the universe with stunning accuracy. Launching with SPHEREx, NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will study how the mass and energy of the Sun’s corona transition into the solar wind.
NASA’s SPHEREx space observatory was photographed at BAE Systems in Boulder, Colorado, in November 2024 after completing environmental testing. The spacecraft’s three concentric cones help direct heat and light away from the telescope and other components, keeping them cool. BAE Systems IMAP (Interstellar Mapping and Acceleration Probe), scheduled to launch from Cape Canaveral in late 2025, will help map out thethe heliosphere – the magnetic environment surrounding and protecting our solar system. Carrying 10 instruments to make its observations, the IMAP mission is targeting the L1 Lagrange Point, an area between Earth and the Sun that is easy for spacecraft to maintain orbit, along with two Sun observing rideshare missions – NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow-On at L1). Also launching in late 2025 on a Falcon 9 from Vandenberg is the second of two identical satellites, Sentinel-6B, which will monitor global sea levels with unprecedented precision. Its predecessor, Sentinel-6 Michael Freilich, has been delivering crucial data since it launched in 2020, and Sentinel-6B will ensure the continuation of this mission through 2030.
“Our missions launching next year will include groundbreaking technologies to help us learn more about the universe than ever before and provide new data for researchers that will have positive benefits here on Earth,” said LSP’s Deputy Program Manager Jenny Lyons.
NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) identical dual spacecraft are inspected and processed on dollies in a high bay of the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Thursday, Aug. 22, 2024. As the first multi-spacecraft orbital science mission to Mars, ESCAPADE’s twin orbiters will take simultaneous observations from different locations around the planet and reveal the real-time response to space weather and how the Martian magnetosphere changes over time.NASA/Kim Shiflett The program’s support for small satellite missions next year includes several missions to monitor the Sun, collect climate data, and more. NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission to explore Mars’ magnetosphere will lift off from Cape Canaveral’s Launch Complex 36 on NASA’s inaugural flight of Blue Origin’s New Glenn rocket. Some of these small satellite missions are part of NASA’s CubeSat Launch Initiative, which offers the next generation of scientists, engineers, and technologists a unique opportunity to conduct scientific research and develop and demonstrate novel technologies in space.
Building the Spaceport’s Future
Teams expect a busy year of construction projects to accommodate new missions, hardware, and milestones. In preparation for Artemis IV, mobile launcher 2 construction and modifications in the VAB’s High Bays 3 and 4 for the larger SLS Block 1B configuration will ramp up. Teams also will upgrade the spaceport’s Converter Compressor Facility (CCF) to meet the helium needs of its commercial launch partners and the Artemis campaign, increasing efficiency, reliability, and speed of pumping helium to rockets. Upgrades to the CCF’s internal infrastructure are also part of Kennedy’s plan to earn the U.S. Green Building Council’s Leadership in Energy and Environmental Design certification, joining nine other Kennedy facilities in achieving that rating.
Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The iconic Vehicle Assembly Building, currently used for assembly of NASA’s Space Launch System rocket for Artemis missions, remains the only building in which rockets were assembled that carried humans to the surface of another world. NASA/Ben Smegelsky “Kennedy’s spaceport will continue to see its launch cadence grow, and we have to meet our program and commercial partner needs in the most efficient way possible,” said Sasha Sims, deputy director of Kennedy’s Spaceport Integration and Services Directorate. “Process improvements and integrated approaches should improve the speed at which government and commercial construction takes place while also improving Kennedy’s infrastructure so that it’s robust, sustainable, and able to support America’s future in space.”
Driving down acquisition costs, increasing competition, and using innovative contracting mechanisms for construction are just some of the initiatives to maximize efficiency and reliability in 2025. The center’s “Critical Day” policy prohibits certain types of work during launches requiring full flight range support but will no longer apply to commercial launches where minimal flight range support is required, training events, static fires, exercises, tests, rehearsals, nor other activities leading up to or supporting launches. This policy change is expected to create more flexibility and free up over 150 days annually for construction, maintenance, and other essential work needed to keep the spaceport running smoothly.
Finally, Kennedy will continue carrying Apollo’s legacy through Artemis. Seeds that traveled aboard the Orion spacecraft during the Artemis I mission will be planted at the spaceport, honoring the legacy of the original Moon Trees that grew from seeds flown on Apollo 14. The Florida spaceport will become one of the select locations across the country where the “new generation” of Moon Trees will take root and provide living testimony to the agency’s continuing legacy of lunar exploration.
“With so many missions and initiatives on the horizon, I’m looking forward to another banner year at Kennedy Space Center,” Petro said. “We truly are launching humanity’s future.”
View the full article
-
By Space Force
The mission successfully achieved a complex effort across multiple Space Force organizations to pull an existing GPS III satellite from storage, accelerate integration and launch vehicle readiness, and rapidly process for launch.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.