Members Can Post Anonymously On This Site
The Truth Is Out There - A wee bit of Fun with Photoshop Generative AI Fill
-
Similar Topics
-
By Space Force
Three finalists from the Generative AI Challenge that will present their generative AI solutions and compete for first place at this year’s Space Power Conference.
View the full article
-
By NASA
Credit: NASA In an effort to grow new commercial markets that support the future of space exploration, scientific discovery, and aeronautics research, NASA is preparing to relaunch its Mentor-Protégé Program for contractors on Friday, Nov. 1.
The program originally was launched to encourage NASA prime contractors, or mentors, to enter into agreements with eligible small businesses, or protégés. These agreements were created to enhance the protégés’ performance on NASA contracts and subcontracts, foster the establishment of long-term business relationships between small businesses and NASA prime contractors, and increase the overall number of small businesses that receive NASA contracts and subcontract awards.
“The NASA Mentor-Protégé Program is a critical enabling tool that allows experienced companies to provide business developmental assistance to emerging firms,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs (OSBP). “The program enables NASA to expand its industrial base of suppliers, as prime and subcontractors, to assist in executing the mission and programs throughout the agency.”
The program’s relaunch follows an assessment of its policies and procedures by OSBP to ensure it continues to support NASA’s missions and addresses any supply chain gaps at an optimal level.
To provide more information about the program and its relaunch, OSBP will host an online lunch and learn event on Thursday, Nov. 7, at 1:00 p.m. EST. The event is open to all current and potential mentors and protégés who want to learn more about changes in the program, qualifications to participate, and how to apply.
“We are excited about rolling out the enhanced NASA Mentor-Protégé Program,” said David Brock, lead small business specialist for OSBP. “The program’s new focus will allow large businesses to mentor smaller firms in key areas that align with NASA’s mission and opportunities within the agency’s supply chain.”
One key change expands eligibility to all small businesses, in addition to minority-serving institutions, including Historically Black Colleges and Universities, and Ability One entities. This expansion enables the program to support an inclusive environment for more small businesses and underserved communities to interact with NASA and its contractors.
The program also will focus on engaging businesses within a select number of North American Industry Classifications System (NAICS) codes and specific industry sectors, such as research and development and aerospace manufacturing. These adjustments will allow the program to better support NASA’s long-term strategic goals and mission success.
The program is designed to benefit both the mentor and the protégé by fostering productive networking and contract opportunities. In a mentor-protégé agreement, mentors build relationships with small businesses, developing a subcontracting base and accruing credit toward their small business subcontracting goals. In addition, protégés receive technical and developmental assistance while also gaining sole-source contracts from mentors and additional contracting opportunities.
NASA is responsible for the administration and management of each agreement. The OSBP oversees the program and conducts semi-annual performance reviews to monitor progress and accomplishments made as a result of the mentor-protégé agreement.
To apply to be a mentor, companies must be a current NASA prime contractor with an approved small business contracting plan. Companies also must be eligible for the receipt of government contracts and be categorized under certain NAICS codes. Potential protégés must certify as a small business within NAICS size standards.
Find more information about participating in NASA’s Mentor-Protégé Program at:
https://www.nasa.gov/osbp/mentor-protege-program
Share
Details
Last Updated Oct 29, 2024 LocationNASA Headquarters Related Terms
Office of Small Business Programs (OSBP) NASA Headquarters View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Sols 4314-4315: Wait, What Was That Back There?
A view of the right-middle wheel of NASA’s Mars rover Curiosity, one of the rover’s six well-traveled wheels. Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on Sept. 22, 2024, sol 4312 (Martian day 4,312) of the Mars Science Laboratory Mission, at 18:37:41 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Sept. 23, 2024
After a busy weekend of activities, Curiosity is ready for another week of planning. One of the activities over the weekend was our periodic check-in on our wheels to see how they are holding up on the rough terrain. The image shows the MAHLI view of the right-middle (RM) wheel, which is still holding up well despite taking some of the worst abuse from Mars.
We are planning contact science with APXS and MAHLI on “Burst Rock,” which is a target that has an interesting texture and has bright-toned clasts and a gray coating. It is part of the Gediz Vallis Ridge channel deposits and will help out understanding of the channel. Unfortunately, it was too rough to brush, but it is clean enough that we can still get good science data.
We are doing a lot of imaging and remote science today. We are taking Mastcam mosaics of multiple targets. “Log Meadow” is a target designed to get a look at the distribution of the white stones in the channel. “Grand Sentinel” is a target on the opposite side of our previous workspace, allowing us to document it from a different angle. “Tunnel Rock” and “Tombstone Ridge” are sedimentary rocks that may have ripple-like layers; examining the layer contours helps inform how rocks were formed. Lastly, “Gravel Ridge” is a target in “Arc Pass” where we are continuing to examine clasts and sedimentary layers. We also take a ChemCam LIBS observation of Log Meadow and a long-distance RMI image of “Chanbank,” another area of white stones. We round it off with a Navcam mosaic of the rover to monitor dust on the deck.
After wrapping up the targeted and contact science, we’re ready to drive. As the science team had time to look a bit more at the data collected in that region, they discovered this target that was worth going back for. We are driving back to the area of the white stones to do more contact science on rocks that look similar to the elemental sulfur we saw earlier this year. Planning ahead, I got to scout this drive on Friday, laying out the safest path and looking for parking spots that were both good for communications as well as for doing contact science. The target “Sheep Creek” is about 50 meters (about 164 feet) to the northeast, which makes the drive a challenge — the resolution of our imagery at that range makes it harder to pinpoint these small rocks. We do have really good imaging in that direction, and the terrain isn’t super scary, so the Rover Planners are going to try to make it in one drive. During the drive, we will be taking a MARDI “sidewalk” movie (a series of images looking below the rover for the entire length of the drive), which will help document the channel. On the second sol of the plan, we do some additional atmospheric and untargeted science. We have a Navcam suprahorizon movie (looking at the crater rim to evaluate dust in the atmosphere) and a dust devil movie. We also have a ChemCam AEGIS observation, where the rover will autonomously select a target to image. Overnight, CheMin does an “empty cell” analysis to confirm that the system is cleaned out and ready for the next sampling campaign.
Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
Share
Details
Last Updated Sep 24, 2024 Related Terms
Blogs Explore More
3 min read A Striped Surprise
Last week, team scientists and the internet alike were amazed when Perseverance spotted a black-and-white…
Article
1 day ago
3 min read Sols 4311–4313: A Weekend of Engineering Curiosity
Article
1 day ago
3 min read Sols 4309–4310: Leaning Back, Driving Back
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Lee esta entrevista en español aquí Dr. Ariadna Farrés-Basiana would look up at the sky and marvel at the immensity of space when she was younger. Now, the bounds are limitless as she helps NASA explore the expansive universe by computing the trajectories and maneuvers to get a spacecraft into space.
Name: Dr. Ariadna Farrés-Basiana
Title: Astrodynamics and solar radiation pressure specialist,
Formal Job Classification: Scientific collaborator
Organization Navigation and Mission Design Branch (Code 595)
Dr. Ariadna Farrés-Basiana is an astrodynamics and solar radiation pressure specialist at NASA’s Goddard Space Flight Center in Greenbelt, Md.Photo courtesy of Ariadna Farrés-Basiana What is your role at Goddard? What do you focus on?
I am part of the flight dynamics team. We are the ones in charge of computing the trajectories, maneuvers, amongst other things to get a spacecraft into space to its final destination. I am currently working on two main projects: the Space Weather Follow On-Lagrange 1 (SWFO-L1) mission, which is a National Oceanic and Atmospheric Administration (NOAA) mission that will monitor space weather, and NASA’s Roman Space Telescope. I participate in both missions as part of the flight dynamics team. I am in charge of calculating the transfer trajectory, which would be the path through space that these missions must follow to go from Earth to Lagrange points L1 and L2. These are places in space where gravitational forces balance each other and a spacecraft doesn’t need to spend as much fuel to maintain its orbit. In addition to that, I work on station-keeping strategies, which are the routine maneuvers that we must do to keep our telescope in orbit.
What was your path to NASA?
My Ph.D. focused on solar sails, which is a way of navigating through space using the force of light emitted by the Sun as if it were wind that drives the sails of the spacecraft. I always thought that my contribution to NASA would be as a researcher or as a professor at a university. I had always dreamed of joining NASA, but I never thought it was possible. At the time, I was trying to find a position as a tenured professor at the University of Barcelona. While I was waiting, a professor of mine who had collaborated with people at NASA back in the ’90s called his former colleagues and told them that he had a Ph.D. student who was looking for a summer internship; then he asked if I could intern with them for a few months. And they said yes. I came to Goddard one summer as an intern and it was amazing. In the end I didn’t get the position as a tenured professor in Spain, and when I told my colleagues that I didn’t have a job, they asked me if I wanted to come and finish the research project I had started here, and after that I continued to extend my internship. In May 2017, I joined Goddard for the second time, this time as a full-time employee. What would have been only seven months of internship ended up being seven years that I have been here.
What made you interested in mathematics and specialize in it?
When it came time to choose what I wanted to major in, I was deciding between two majors: aerospace engineering, because I’ve always had space on my mind, or mathematics because I really enjoyed it. I chose mathematics, mainly because I could stay in my country. About 20 to 25 years ago, research in aerospace was not a thing in Spain; specializing in space engineering would have meant moving from my hometown and going to Madrid, which is where the only university I knew I could do that was. So, I ended up choosing math and decided it would be cool to learn more about it.
You mentioned that you were interested in space since you were a child. What fascinated you about the sky?
I remember looking at the sky, looking at the Moon and wondering what’s out there. My dad was also into science, and he would explain things regarding space. He had a friend that had a telescope and from time to time, we’d go observe it which was fascinating. There was something about the immensity of space and the fact that we don’t know much about it that interested me.
How do you feel about getting to work on two different telescopes, having been inspired by telescopes when you were younger?
It is very gratifying to know that my work will help these telescopes go to space and operate from there. Finding solutions for this makes me very proud of what I do. I feel like all the knowledge I have is being applied to something physical, practical, that will be in space and that will help other scientists make great discoveries.
What story or tradition from your hometown makes you smile when you think about it?
The most beautiful day is the Sant Jordi festival, it is a precious day. It’s the day of the book and the rose. It’s not a holiday, but everyone is looking for an excuse, any time of the day to go out and buy a book and a rose for their loved ones. The atmosphere is beautiful during those days. Also, my brother’s name is Jordi, so it’s a special day because we all celebrate it together.
“My dad was also into science, and he would explain things regarding space,” said Ariadna. “He had a friend that had a telescope and from time to time, we’d go observe it which was fascinating. There was something about the immensity of space and the fact that we don’t know much about it that interested me.”Photo courtesy of Ariadna Farrés-Basiana Are you involved in other activities outside of your work at NASA?
I am part of the Hypatia project. It encourages scientific vocations among girls who are potentially interested in science, technology, engineering, and mathematics (STEM) careers. We do analog missions in the Utah desert, which simulates day-to-day life on Mars. Who has not dreamed of going to space, or has simply wondered what a trip to Mars or life on Mars would be like? With these simulations we help bring these dreams closer to students. What I like most about this initiative is being able to go to schools to explain our experiences to them. It is important to show different women who do research. This helps change the ideology of many who imagine that to be a scientist you must be a man with glasses and a white coat. There are few women in the space field. Many times, you have the feeling that you have to prove that you are worth more, show that you are there because you deserve it. It’s nice to be involved in projects like Hypatia, because I’ve spent a lot of time thinking about gender in STEM disciplines. It is my contribution so that the next generations are not so afraid to try to pursue a STEM career.
Where do you see yourself in the next five years?
I see myself here at NASA, working on different missions, perhaps taking on a role with a little more leadership or more responsibility.
By Alexa Figueroa
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Aug 02, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard Goddard Space Flight Center NASA en español People of NASA Explore More
10 min read Kan Yang: Translating Science Ideas into Engineering Concepts
Article 2 months ago 6 min read Rebekah Hounsell: Tracking Cosmic Light to Untangle the Universe’s Darkest Mysteries
Article 2 weeks ago 7 min read Bente Eegholm: Ensuring Space Telescopes Have Stellar Vision
Article 1 month ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.