Jump to content

Recommended Posts

Posted
This Vatican insider revealed they are hiding this deep within the Vatican's closed archives. Today, we take a look at what this Vatican insider said. 

vatican%20aliens%20ufo.jpg

The possibility of discovering signs of advanced life and beings is not typically associated with major religious institutions, including the Vatican but according to the director of the Vatican observatory, Dr Jose Funes, new evidence suggests that the Vatican may possess evidence of the existence of advanced life, and could be concealing their existence from the public. 

Back in In 2008, Dr. José Funes already said that intelligent beings created could exist in outer space. Just as there are multiple forms of life on earth, so there could exist intelligent beings in outer space. And some aliens could even be free from original sin. 

In 2009, Lachezar Filipov, deputy director of the Space Research Institute of the Bulgarian Academy of Sciences said that even the seat of the Catholic church, the Vatican, had agreed that aliens existed and in 2010, The Pope's astronomer, Guy Consolmagno, said intelligent aliens may be living among the stars and are likely to have souls. 

The late prelate of the Congregation for the Evangelization of Peoples Corrado Balducci, a theologian of the Roman Curia perhaps most clearly spoke out about the existence of extraterrestrials. Balducci has said repeatedly that extraterrestrial contact is real and that there are aliens among us. 

aliens%20vatican%20insiders.jpg

From left to right: José Funes , Lachezar Filipov , Guy Consolmagno , Corrado Balducci 

Not only Funes, Filipov, Consolmagno and Balducci actually confirm that the Vatican may possess evidence of the existence of extraterrestrial advanced life, in the 1920's a highly educated Russian scientist Professor Genrikh Mavrikiyevich Ludvig was able to study amazing ancient manuscripts during his sojourn in the Vatican’s library containing information about extraterrestrials that had visited our planet. In addition, Professor Ludvig mentioned that the library contained manuscripts about alchemy and ancient codes 

History has been suppressed in the biggest, long-term cover-up ever and the Vatican knows all the secrets.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      Researchers utilizing publicly available Synthetic Aperture Radar (SAR) data from Capella Space and Umbra have uncovered significant hidden structures within and beneath the CFR Pyramid on the Giza Plateau. The study reveals five distinct "Zed" structures located above what was previously believed to be the pharaoh’s burial chamber, resembling similar formations found in the Khufu Pyramid. These structures are connected by geometric pathways, with additional secondary formations identified through satellite imaging. 
      Source and credit images: The Reese report / The Kafre Research Project.
      Most notably, eight vertically aligned cylindrical structures, arranged in two parallel rows from north to south, extend 648 meters underground. These formations merge into two massive cubic structures, each approximately 80 meters per side. Tomographical analysis indicates that the cylindrical structures function as hollow wells surrounded by descending spiral pathways. 
      Further research suggests that these subterranean formations are not limited to the CFR Pyramid but extend beneath the Khufu and Menkaure pyramids as well, reaching depths of approximately two kilometers. The study marks a groundbreaking advancement in the understanding of the Giza Plateau’s underground complexity, 
      The discoveries surrounding the CFR Pyramid represent just the tip of a vast and complex structure beneath the Giza Plateau.If confirmed, this discovery could challenge mainstream Egyptology’s belief that the pyramids were simply royal tombs. 
        View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This image shows about 1.5% of Euclid’s Deep Field South, one of three regions of the sky that the telescope will observe for more than 40 weeks over the course of its prime mission, spotting faint and distant galaxies. One galaxy cluster near the center is located almost 6 billion light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi With contributions from NASA, the mission is looking back into the universe’s history to understand how the universe’s expansion has changed. 
      The Euclid mission — led by ESA (European Space Agency) with contributions from NASA — aims to find out why our universe is expanding at an accelerating rate. Astronomers use the term “dark energy” to refer to the unknown cause of this phenomenon, and Euclid will take images of billions of galaxies to learn more about it. A portion of the mission’s data was released to the public by ESA released on Wednesday, March 19.
      This new data has been analyzed by mission scientists and provides a glimpse of Euclid’s progress. Deemed a “quick” data release, this batch focuses on select areas of the sky to demonstrate what can be expected in the larger data releases to come and to allow scientists to sharpen their data analysis tools in preparation.
      The data release contains observations of Euclid’s three “deep fields,” or areas of the sky where the space telescope will eventually make its farthest observations of the universe. Featuring one week’s worth of viewing, the Euclid images contain 26 million galaxies, the most distant being over 10.5 billion light-years away. Launched in July 2023, the space telescope is expected to observe more than 1.5 billion galaxies during its six-year prime mission.
      The entirety of the Euclid mission’s Deep Field South region is shown here. It is about 28.1 square degrees on the sky. Euclid will observe this and two other deep field regions for a total of about 40 weeks during its 6-year primary mission. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi By the end of that prime mission, Euclid will have observed the deep fields for a total of about 40 weeks in order to gradually collect more light, revealing fainter and more distant galaxies. This approach is akin to keeping a camera shutter open to photograph a subject in low light.
      The first deep field observations, taken by NASA’s Hubble Space Telescope in 1995, famously revealed the existence of many more galaxies in the universe than expected. Euclid’s ultimate goal is not to discover new galaxies but to use observations of them to investigate how dark energy’s influence has changed over the course of the universe’s history.
      In particular, scientists want to know how much the rate of expansion has increased or slowed down over time. Whatever the answer, that information would provide new clues about the fundamental nature of this phenomenon. NASA’s Nancy Grace Roman Space Telescope, set to launch by 2027, will also observe large sections of the sky in order to study dark energy, complementing Euclid’s observations.
      The location of the Euclid deep fields are shown marked in yellow on this all-sky view from ESA’s Gaia and Planck missions. The bright horizontal band is the plane of our Milky Way galaxy. Euclid’s Deep Field South is at bottom left.ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA/Planck Collaboration Looking Back in Time
      To study dark energy’s effect throughout cosmic history, astronomers will use Euclid to create detailed, 3D maps of all the stuff in the universe. With those maps, they want to measure how quickly dark energy is causing galaxies and big clumps of matter to move away from one another. They also want to measure that rate of expansion at different points in the past. This is possible because light from distant objects takes time to travel across space. When astronomers look at distant galaxies, they see what those objects looked like in the past.
      For example, an object 100 light-years away looks the way it did 100 years ago. It’s like receiving a letter that took 100 years to be delivered and thus contains information from when it was written. By creating a map of objects at a range of distances, scientists can see how the universe has changed over time, including how dark energy’s influence may have varied.
      But stars, galaxies, and all the “normal” matter that emits and reflects light is only about one-fifth of all the matter in the universe. The rest is called “dark matter” — a material that neither emits nor reflects light. To measure dark energy’s influence on the universe, astronomers need to include dark matter in their maps.  
      Bending and Warping
      Although dark matter is invisible, its influence can be measured through something called gravitational lensing. The mass of both normal and dark matter creates curves in space, and light traveling toward Earth bends or warps as it encounters those curves. In fact, the light from a distant galaxy can bend so much that it forms an arc, a full circle (called an Einstein ring), or even multiple images of the same galaxy, almost as though the light has passed through a glass lens.
      In most cases, gravitational lensing warps the apparent shape of a galaxy so subtly that researchers need special tools and computer software to see it. Spotting those subtle changes across billions of galaxies enables scientists to do two things: create a detailed map of the presence of dark matter and observe how dark energy influenced it over cosmic history.
      It is only with a very large sample of galaxies that researchers can be confident they are seeing the effects of dark matter. The newly released Euclid data covers 63 square degrees of the sky, an area equivalent to an array of 300 full Moons. To date, Euclid has observed about 2,000 square degrees, which is approximately 14% of its total survey area of 14,000 square degrees. By the end of its mission, Euclid will have observed a third of the entire sky.
      The dataset released this month is described in several preprint papers available today. The mission’s first cosmology data will be released in October 2026. Data accumulated over additional, multiple passes of the deep field locations will also be included in the 2026 release.
      More About Euclid
      Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
      Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, supports U.S.-based science investigations, and science data is archived at the NASA / IPAC Infrared Science Archive (IRSA). JPL is a division of Caltech.
      For more information about Euclid go to:
      science.nasa.gov/mission/euclid/
      News Media Contact
      ESA Media Relations
      media@esa.int
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-039
      Share
      Details
      Last Updated Mar 19, 2025 Related Terms
      Euclid Galaxies, Stars, & Black Holes Jet Propulsion Laboratory Stars Explore More
      5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
      Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…
      Article 24 hours ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL
      Article 2 days ago 3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      On 19 March 2025, the European Space Agency’s Euclid mission released its first batch of survey data, including a preview of its deep fields. Here, hundreds of thousands of galaxies in different shapes and sizes take centre stage and show a glimpse of their large-scale organisation in the cosmic web.
      View the full article
    • By NASA
      Pictured from left: Roscosmos cosmonaut Kirill Peskov, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut mission specialist Takuya Onishi train at SpaceX facilities in Hawthorne, California (Credit: SpaceX). During NASA’s SpaceX Crew-10 mission to the International Space Station, which is scheduled to launch in March, select members of the four-person crew will participate in exercise and medical research aimed at keeping astronauts fit on future long-duration missions.
      Crew members living and working aboard the space station have access to a designated training area outfitted with a weight-lifting system, a stationary bike, and a specialized treadmill called T2. The space station is expansive enough for bulky exercise equipment that helps preserve the health and performance of astronauts in space and when they return to Earth.
      However, as NASA looks to explore beyond low Earth orbit, the agency anticipates future spacecraft will not have room for large exercise equipment, like treadmills. Since walking and running are essential parts of workouts aboard the space station, NASA does not fully understand how long-duration spaceflights without a treadmill will impact crews’ health and motor functions. Consequently, NASA researchers are adjusting astronauts’ training regimens, including eliminating the use of the treadmill in some cases, to study ways that maintain crews’ strength, fitness, bone health, and balance.
      In an ongoing study called Zero T2, expedition crews are divided into three groups with different workout regimens. One group continues exercising normally, using all the available equipment aboard the orbiting complex. A second group forgoes using the treadmill, relying solely on the other available equipment. While a third group will only exercise using a new, experimental, less bulky workout machine. NASA compares the groups’ health data collected before, during, and after flight to determine if the lack of treadmill use negatively impacts the crews’ fitness, muscle performance, and recovery after return to Earth.
      “A treadmill takes up a lot of mass, space, and energy. This is not great for missions to Mars where every kilogram counts,” explained NASA astronaut Matthew Dominick, who participated in the same study while serving as commander of NASA’s SpaceX Crew-8 mission in 2024. “The Zero T2 experiment is helping us figure out if we can go without a treadmill and still be healthy.”
      Results of the Zero T2 study will help researchers determine how treadmill-free workouts may affect crew health, which will, in turn, help NASA build realistic exercise protocols for future deep space missions. Additionally, this investigation could support design improvements for exercise devices used to prevent or treat bone, muscle, and cardiovascular health on Earth.
      Beyond the Zero T2 study, select NASA crew members will perform additional studies supported by the agency’s Human Research Program during their mission. Participating crew will conduct medical exams, provide biological samples, and document spaceflight-related injuries, among other tasks. 
      “Astronauts choose which studies to participate in based on their interests,” explained Cherie Oubre, a NASA scientist at the agency’s Johnson Space Center in Houston, who helps oversee human research studies carried out aboard the space station. “The experiments address important risks and gaps associated with human spaceflight.”
      One set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), will help researchers understand how multiple systems within the human body adjust to varying mission durations. CIPHER study members will complete vision assessments, cognitive tests, and MRI scans to help provide a clearer picture of how the entire body is affected by space.
      “The CIPHER experiment tracks changes in the eyes, bones, heart, muscles, immune system, and more,” Oubre said. “The investigation provides the most comprehensive overview of how long-duration spaceflight affects the entire human body ever conducted, helping us advance human expeditions to the Moon, Mars, and elsewhere.”
      Some crew members also will contribute to a core set of measurements called Spaceflight Standard Measures. The measurements represent how the human body and mind adapt to space travel over time and serve as a basis for other spaceflight studies like CIPHER. Additionally, crew members may provide biological samples for Omics Archive, a separate study analyzing how the body reacts to long-duration spaceflight at the molecular level.
      In another study, select crew members will test a potential treatment for spaceflight-associated neuro-ocular syndrome, a condition associated with brain changes and swelling of the back of the eye. Researchers are unsure what causes the syndrome or why only certain astronauts develop it, but the shift of bodily fluids toward the head in weightlessness may play a role. Some scientists believe genetics related to how the body processes B vitamins may affect how astronauts respond to those fluid shifts. Participating crew will test whether a daily B vitamin supplement can ease or prevent the development of symptoms. They also will investigate if cuffs worn on astronauts’ thighs to keep fluids in the legs could be an effective intervention.
      Upon return, the select crew members will complete surveys that record any discomfort or injuries associated with landing, such as scrapes and bruises. Results of the surveys­­ ̶ when combined with data retrieved by sensors in the vehicle­­ ̶ will help researchers catalog these injuries and improve the design of spacecraft.
      Crew members began participating in the studies about a year before their mission, learning about the work and offering baseline health data. They will continue to provide data for the experiments for up to two years after returning home.
      ____
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.
      Learn More About Exercising in Space
      Astronauts aboard the International Space Station typically exercise for two hours each day. From running to cycling to weightlifting, learn how crew members complete fitness regimens in space and commit to staying healthy – even in microgravity (Credit: NASA). Explore More
      2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 1 week ago 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Spies a Spiral That May Be Hiding an Imposter
      The spiral galaxy UGC 5460 shines in this NASA/ESA Hubble Space Telescope image. UGC 5460 sits about 60 million light-years away in the constellation Ursa Major. ESA/Hubble & NASA, W. Jacobson-Galán, A. Filippenko, J. Mauerhan
      Download this image

      The sparkling spiral galaxy gracing this NASA/ESA Hubble Space Telescope image is UGC 5460, which sits about 60 million light-years away in the constellation Ursa Major. This image combines four different wavelengths of light to reveal UGC 5460’s central bar of stars, winding spiral arms, and bright blue star clusters. Also captured in the upper left-hand corner is a far closer object: a star just 577 light-years away in our own galaxy.
      UGC 5460 has hosted two recent supernovae: SN 2011ht and SN 2015as. It’s because of these two stellar explosions that Hubble targeted this galaxy, collecting data for three observing programs that aim to study various kinds of supernovae.
      SN 2015as was as a core-collapse supernova: a cataclysmic explosion that happens when the core of a star far more massive than the Sun runs out of fuel and collapses under its own gravity, initiating a rebound of material outside the core. Hubble observations of SN 2015as will help researchers understand what happens when the expanding shockwave of a supernova collides with the gas that surrounds the exploded star.
      SN 2011ht might have been a core-collapse supernova as well, but it could also be an impostor called a luminous blue variable. Luminous blue variables are rare stars that experience eruptions so large that they can mimic supernovae. Crucially, luminous blue variables emerge from these eruptions unscathed, while stars that go supernova do not. Hubble will search for a stellar survivor at SN 2011ht’s location with the goal of revealing the explosion’s origin.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More

      The Death Throes of Stars


      Homing in on Cosmic Explosions

      Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Feb 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hubble’s Galaxies



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
  • Check out these Videos

×
×
  • Create New...