Members Can Post Anonymously On This Site
Origami heat shield: reusable for reentries
-
Similar Topics
-
By European Space Agency
A new European Space Agency-backed study shows that the extreme heatwaves of 2023, which fuelled huge wildfires and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change.
View the full article
-
By NASA
4 Min Read Student-Built Capsules Endure Heat of Re-entry for NASA Science
The five capsules of the KREPE-2 mission are pictured on Earth prior to flight. Credits: University of Kentucky. In July 2024, five student-built capsules endured the scorching heat of re-entry through Earth’s atmosphere as part of the second Kentucky Re-Entry Probe Experiment (KREPE-2). Scientists are now analyzing the data from the KREPE-2 experiments, which could advance the development of heat shields that protect spacecraft when they return to Earth.
The mission was designed to put a variety of heat shield prototypes to the test in authentic re-entry conditions to see how they would perform. These experimental capsules, which were built by students at the University of Kentucky and funded by the NASA Established Program to Stimulate Competitive Research (EPSCoR) within NASA’s Office of STEM Engagement, all survived more than 4,000 degrees Fahrenheit during descent.
The football-sized capsules also successfully transmitted valuable data via the Iridium satellite network along their fiery journey. The trove of information they provided is currently being analyzed to consider in current and future spacecraft design, and to improve upon designs for future experiments.
“These data – and the instruments used to obtain the data – assist NASA with designing and assessing the performance of current and new spacecraft that transport crew and cargo to and from space,” said Stan Bouslog, thermal protection system senior discipline expert at NASA’s Johnson Space Center in Houston who served as the agency’s technical monitor for the project.
Taking the Plunge: Communicating Through a Fiery Descent
“The only way to ‘test like you fly’ a thermal protection system is to expose it to actual hypersonic flight through an atmosphere,” Bouslog said.
The self-contained capsules launched aboard an uncrewed Northrop Grumman Cygnus spacecraft in January 2024 along with other cargo bound for the International Space Station. The cargo craft detached from the space station July 12 as the orbiting laboratory flew above the south Atlantic Ocean. As the Cygnus spacecraft began its planned breakup during re-entry, the KREPE-2 capsules detected a signal – a temperature spike or acceleration – to start recording data and were released from the vehicle. At that point, they were traveling at a velocity of about 16,000 miles per hour at an altitude of approximately 180,000 feet.
The University of Kentucky student team and advisors watched and waited to learn how the capsules had fared.
As the capsules descended through the atmosphere, one group watched from aboard an aircraft flying near the Cook Islands in the south Pacific Ocean, where they tracked the return of the Cygnus spacecraft. The flight was arranged in partnership with the University of Southern Queensland in Toowoomba, Queensland, Australia, and the University of Stuttgart in Stuttgart, Germany. Alexandre Martin, professor of mechanical and aerospace engineering at the University of Kentucky and the principal investigator for the experiment, was on that flight.
“We flew in close to the re-entry path to take scientific measurements,” Martin said, adding that they used multiple cameras and spectrometers to observe re-entry. “We now have a much better understanding of the break-up event of the Cygnus vehicle, and thus the release of the capsules.”
Meanwhile, members of the University of Kentucky’s Hypersonic Institute had gathered at the university to watch as KREPE-2 data arrived via email. All five successfully communicated their flight conditions as they hurtled to Earth.
“It will take time to extract the data and analyze it,” Martin said. “But the big accomplishment was that every capsule sent data.”
Members of the University of Kentucky student team have begun analyzing the data to digitally reconstruct the flight environment at the time of transmission, providing key insights for future computer modeling and heat shield design.
An artist’s rendering of one of the KREPE-2 capsules during re-entry. A. Martin, P. Rodgers, L. Young, J. Adams, University of Kentucky Building on Student Success
The mission builds on the accomplishments of KREPE-1, which took place in December 2022. In that experiment, two capsules recorded temperature measurements as they re-entered Earth’s atmosphere and relayed that data to the ground.
The extensive dataset collected during the KREPE-2 re-entry includes heat shield measurements, such as temperature, as well as flight data including pressure, acceleration, and angular velocity. The team also successfully tested a spectrometer that provided spectral data of the shockwave in front of a capsule.
“KREPE-1 was really to show we could do it,” Martin said. “For KREPE-2, we wanted to fully instrument the capsules and really see what we could learn.”
KREPE-3 is currently set to take place in 2026.
The ongoing project has provided valuable opportunities for the University of Kentucky student team, from undergrads to PhD students, to contribute to spaceflight technology innovation.
“This effort is done by students entirely: fabrication, running simulations, handling all the NASA reviews, and doing all the testing,” Martin said. “We’re there supervising, of course, but it’s always the students who make these missions possible.”
Related links:
EPSCoR Space Station Research Explorer: Kentucky Re-entry Probe Experiment-2 Science Launches to Space Station on NASA’s 20th Northrop Grumman Mission Big Goals, Small Package: Enabling Compact Deliveries from Space Keep Exploring Discover More STEM Topics From NASA
For Colleges and Universities
Established Program to Stimulate Competitive Research
About STEM Engagement at NASA
Learning Resources
View the full article
-
By Space Force
The conference featured keynote speakers, panels of enlisted leaders, and fireside chats, bringing together Hispanic community leaders and advocates to discuss the challenges and opportunities Hispanic service members and civilians face in the Air Force and Space Force.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Data from one of the two CubeSats that comprise NASA’s PREFIRE mission was used to make this data visualization showing brightness temperature — the intensity of infrared emissions — over Greenland. Red represents more intense emissions; blue indicates lower intensities. The data was captured in July.
NASA’s Scientific Visualization Studio The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate.
NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.
One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.
The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.
“We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.”
Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.
“It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.”
This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.
The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.
The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.
More About PREFIRE
The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments.
To learn more about PREFIRE, visit:
https://science.nasa.gov/mission/prefire/
5 Things to Know About NASA’s Tiny Twin Polar Satellites Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-116
Share
Details
Last Updated Sep 03, 2024 Related Terms
PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Earth Earth Science Polar Explore More
2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
Article 4 hours ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
Article 5 days ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Science in Space: July 2024
This time of year, managing heat is on everyone’s mind. Especially now, as May 2024 marked a full year of record-high monthly temperatures – an unprecedented streak, according to scientists from NASA’s Goddard Institute for Space Studies in New York.
NASA experts analyze data from thousands of land-, sea-, and sky-based instruments to calculate Earth’s global temperature. Knowing how hot it is helps scientists, health care workers, and public officials plan for and respond to the heat’s effects on people and infrastructure.
Crew members on the International Space Station deal with a different type of heat – that generated by electronics, life support systems, and other equipment. Managing this heat is essential to the operation of the spacecraft and the health and safety of its occupants.
Taking out the heat
Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.NASA Packed bed reactors (PBRs) are structures packed with beads of different materials to increase contact between a liquid and a gas flowing through them. They are widely used for many applications, including thermal control or heat management, life support systems, and water filtration and offer low power consumption, compact size, and reliability. Packed Bed Reactor Experiment: Water Recovery Series (PBRE-WRS) continues evaluation of how microgravity affects the performance of different packing media. The material used and the shape and size of the beads all contribute to the effectiveness of heat exchange in a PBR. This investigation could inform the design and operation of these systems in microgravity and on the Moon and Mars and lead to improvements in this technology for applications on Earth such as water purification and cooling systems.
Previous investigations, PBRE and PBRE-2, provided fundamental understanding of simultaneous gas and liquid flow through PBRs in microgravity. This improved understanding helps to support development of more efficient and lightweight thermal management and life support systems for future missions.
Boiling heat away
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
In this video from the FBCE, as liquid begins to boil, small bubbles form at the heated surface (top of the image) and grow larger over time.NASA As electronic devices add more features, they generate more heat, which becomes increasingly challenging to remove. Flow boiling is a method of thermal management that uses this heat to boil a moving liquid and generate vapor bubbles that lift the heat from the surface, then change back to a liquid via condensation. But using boiling for heat management is less efficient in microgravity because, in the absence of buoyancy, bubbles grow larger and remain near the surface.
The Flow Boiling and Condensation Experiment (FBCE) tested a model for a flow boiling and condensation facility for the space station. Researchers identified important factors affecting this process in microgravity and how they differ from those on Earth. The findings could help researchers identify ways to improve the operation of these systems in microgravity.
This research also led to development of an artificial neural network (ANN) trained on data from the FBCE experiment to predict heat flow and transfer for use in the design and analysis of thermal systems. ANNs are a type of artificial intelligence made of computational units similar to neurons in the nervous systems of living things.
NASA astronaut Josh Cassada works on the PFMI-ASCENT investigation.NASA The PFMI-ASCENT investigation found that adding microscopic teeth or rachets to a surface caused more bubbles to form and increased the transfer of heat. This finding helps further improve flow boiling systems used to remove heat from electronics in space.
Going with the flow
Close-up view of the Capillary Flow Experiment-2 test chamber.NASA Liquids behave differently in space than they do on Earth. Capillary Flow Experiment-2 studied wetting, or a liquid’s ability to spread across a surface, in different container shapes in microgravity. Results showed that models adequately predict liquid flow for various container shapes. These predictions support improved design of systems that process liquids aboard spacecraft, including systems for thermal control.
Melissa Gaskill
International Space Station Research Communications Team
NASA’s Johnson Space Center
Search this database of scientific experiments to learn more about those mentioned in this article.
Keep Exploring Discover Related Topics
Latest News from Space Station Research
Humans in Space
Space Station Technology Demonstration
Station Benefits for Humanity
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.