Jump to content

CryoSat reveals ice loss from glaciers


Recommended Posts

Glacier ice loss visualised as a cube

When one thinks of the damage that climate change is doing, it’s probable that what comes to mind is a vision of huge lumps of ice dropping off one of the polar ice sheets and crashing into the ocean. While Greenland and Antarctica are losing masses of ice, so too are most of the glaciers around the world, but it’s tricky to measure how much ice they are shedding.

Thanks to ESA’s CryoSat satellite and a breakthrough way of using its data, scientists have discovered that glaciers worldwide have shrunk by a total of 2% in just 10 years, and it’s because of higher air temperatures.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      NASA Reveals Prototype Telescope for Gravitational Wave Observatory
      NASA has revealed the first look at a full-scale prototype for six telescopes that will enable, in the next decade, the space-based detection of gravitational waves — ripples in space-time caused by merging black holes and other cosmic sources.
      On May 20, the full-scale Engineering Development Unit Telescope for the LISA (Laser Interferometer Space Antenna) mission, still in its shipping frame, was moved within a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA/Dennis Henry The LISA (Laser Interferometer Space Antenna) mission is led by ESA (European Space Agency) in partnership with NASA to detect gravitational waves by using lasers to measure precise distances — down to picometers, or trillionths of a meter — between a trio of spacecraft distributed in a vast configuration larger than the Sun. Each side of the triangular array will measure nearly 1.6 million miles, or 2.5 million kilometers.
      “Twin telescopes aboard each spacecraft will both transmit and receive infrared laser beams to track their companions, and NASA is supplying all six of them to the LISA mission,” said Ryan DeRosa, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The prototype, called the Engineering Development Unit Telescope, will guide us as we work toward building the flight hardware.”
      The prototype LISA telescope undergoes post-delivery inspection in a darkened NASA Goddard clean room on May 20. The entire telescope is made from an amber-colored glass-ceramic that resists changes in shape over a wide temperature range, and the mirror’s surface is coated in gold. NASA/Dennis Henry The Engineering Development Unit Telescope, which was manufactured and assembled by L3Harris Technologies in Rochester, New York, arrived at Goddard in May. The primary mirror is coated in gold to better reflect the infrared lasers and to reduce heat loss from a surface exposed to cold space since the telescope will operate best when close to room temperature.
      The prototype is made entirely from an amber-colored glass-ceramic called Zerodur, manufactured by Schott in Mainz, Germany. The material is widely used for telescope mirrors and other applications requiring high precision because its shape changes very little over a wide range of temperatures.
      The LISA mission is slated to launch in the mid-2030s.

      Download additional images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 22, 2024 Related Terms
      Astrophysics Black Holes Galaxies, Stars, & Black Holes Goddard Space Flight Center Gravitational Waves LISA (Laser Interferometer Space Antenna) The Universe Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers think meltwater beneath Martian ice could support microbial life.
      The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0 While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
      Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
      “If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
      Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.  
      Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
      The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of Arizona Mars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
      Thriving Microcosms
      On Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
      “This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
      Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
      In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
      This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
      The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
      Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-142
      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      Mars Astrobiology Jet Propulsion Laboratory Explore More
      4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
      Article 20 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      With the initial images from each of the instruments aboard ESA’s EarthCARE satellite now in hand, it's time to reveal how these four advanced sensors work in synergy to measure exactly how clouds and aerosols influence the heating and cooling of our atmosphere. 
      View the full article
    • By European Space Agency
      ESA’s Mars Express has captured an astonishing array of landforms emerging from a thick winter blanket of frost as spring arrives in the south polar region of Mars. Some of these features are surprisingly dark compared with their icy surroundings, earning their nickname of ‘cryptic terrain’.
      View the full article
    • By NASA
      5 min read
      NASA’s LRO: Lunar Ice Deposits are Widespread
      Deposits of ice in lunar dust and rock (regolith) are more extensive than previously thought, according to a new analysis of data from NASA’s LRO (Lunar Reconnaissance Orbiter) mission. Ice would be a valuable resource for future lunar expeditions. Water could be used for radiation protection and supporting human explorers, or broken into its hydrogen and oxygen components to make rocket fuel, energy, and breathable air.
      Prior studies found signs of ice in the larger permanently shadowed regions (PSRs) near the lunar South Pole, including areas within Cabeus, Haworth, Shoemaker and Faustini craters. In the new work, “We find that there is widespread evidence of water ice within PSRs outside the South Pole, towards at least 77 degrees south latitude,” said Dr. Timothy P. McClanahan of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a paper on this research published October 2 in the Planetary Science Journal.
      The study further aids lunar mission planners by providing maps and identifying the surface characteristics that show where ice is likely and less likely to be found, with evidence for why that should be. “Our model and analysis show that greatest ice concentrations are expected to occur near the PSRs’ coldest locations below 75 Kelvin (-198°C or -325°F) and near the base of the PSRs’ poleward-facing slopes,” said McClanahan.
      This illustration shows the distribution of permanently shadowed regions (in blue) on the Moon poleward of 80 degrees South latitude. They are superimposed on a digital elevation map of the lunar surface (grey) from the Lunar Orbiter Laser Altimeter instrument on board NASA’s Lunar Reconnaissance Orbiter spacecraft. NASA/GSFC/Timothy P. McClanahan “We can’t accurately determine the volume of the PSRs’ ice deposits or identify if they might be buried under a dry layer of regolith. However, we expect that for each surface 1.2 square yards (square meter) residing over these deposits there should be at least about five more quarts (five more liters) of ice within the surface top 3.3 feet (meter), as compared to their surrounding areas,” said McClanahan. The study also mapped where fewer, smaller, or lower-concentration ice deposits would be expected, occurring primarily towards warmer, periodically illuminated areas.
      Ice could become implanted in lunar regolith through comet and meteor impacts, released as vapor (gas) from the lunar interior, or be formed by chemical reactions between hydrogen in the solar wind and oxygen in the regolith. PSRs typically occur in topographic depressions near the lunar poles. Because of the low Sun angle, these areas haven’t seen sunlight for up to billions of years, so are perpetually in extreme cold. Ice molecules are thought to be repeatedly dislodged from the regolith by meteorites, space radiation, or sunlight and travel across the lunar surface until they land in a PSR where they are entrapped by extreme cold. The PSR’s continuously cold surfaces can preserve ice molecules near the surface for perhaps billions of years, where they may accumulate into a deposit that is rich enough to mine. Ice is thought to be quickly lost on surfaces that are exposed to direct sunlight, which precludes their accumulations.  
      The team used LRO’s Lunar Exploration Neutron Detector (LEND) instrument to detect signs of ice deposits by measuring moderate-energy, “epithermal” neutrons. Specifically, the team used LEND’s Collimated Sensor for Epithermal Neutrons (CSETN) that has a fixed 18.6-mile (30-kilometer) diameter field-of-view. Neutrons are created by high-energy galactic cosmic rays that come from powerful deep-space events such as exploding stars, that impact the lunar surface, break up regolith atoms, and scatter subatomic particles called neutrons. The neutrons, which can originate from up to about a 3.3-foot (meter’s) depth, ping-pong their way through the regolith, running into other atoms. Some get directed into space, where they can be detected by LEND.  Since hydrogen is about the same mass as a neutron, a collision with hydrogen causes the neutron to lose relatively more energy than a collision with most common regolith elements. So, where hydrogen is present in regolith, its concentration creates a corresponding reduction in the observed number of moderate-energy neutrons.
      “We hypothesized that if all PSRs have the same hydrogen concentration, then CSETN should proportionally detect their hydrogen concentrations as a function of their areas. So, more hydrogen should be observed towards the larger-area PSRs,” said McClanahan.
      The model was developed from a theoretical study that demonstrated how similarly hydrogen-enhanced PSRs would be detected by CSETNs fixed-area field-of-view. The correlation was demonstrated using the neutron emissions from 502 PSRs with areas ranging from 1.5 square miles (4 km2) to 417 square miles (1079 km2) that contrasted against their surrounding less hydrogen-enhanced areas. The correlation was expectedly weak for the small PSRs but increased towards the larger-area PSRs.
      The research was sponsored by the LRO project science team, NASA’s Goddard Space Flight Center’s Artificial Intelligence Working Group, and NASA grant award number 80GSFC21M0002. The study was conducted using NASA’s LRO Diviner radiometer and Lunar Orbiter Laser Altimeter instruments. The LEND instrument was developed by the Russian Space Agency, Roscosmos by its Space Research Institute (IKI). LEND was integrated to the LRO spacecraft at the NASA Goddard Space Flight Center. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington.
      Share








      Details
      Last Updated Oct 03, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location Goddard Space Flight Center Related Terms
      Earth’s Moon Lunar Reconnaissance Orbiter (LRO) Uncategorized Explore More
      6 min read NASA’s LRO Discovers Lunar Hydrogen More Abundant on Moon’s Pole-Facing Slopes
      Space travel is difficult and expensive – it would cost thousands of dollars to launch…


      Article


      10 years ago
      4 min read NASA’s LRO Finds Lunar Pits Harbor Comfortable Temperatures
      NASA-funded scientists have discovered shaded locations within pits on the Moon that always hover around…


      Article


      2 years ago
      4 min read NASA’s LRO Spacecraft Captures Images of LADEE’s Impact Crater
      NASA’S Lunar Reconnaissance Orbiter (LRO) spacecraft has spied a new crater on the lunar surface;…


      Article


      10 years ago
      View the full article
  • Check out these Videos

×
×
  • Create New...