Members Can Post Anonymously On This Site
VP Harris, South Korea President Yoon Suk Yeol to Visit NASA Goddard
-
Similar Topics
-
By NASA
The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
Learn more about International Space Station research and operations at:
https://www.nasa.gov/station
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s C-130, now under new ownership, sits ready for its final departure from NASA’s Wallops Flight Facility in Virginia, on Friday, April 18, 2025. NASA/Garon Clark NASA’s C-130 Hercules, fondly known as the Herc, went wheels up at 9:45 a.m., Friday, April 18, as it departed from its decade-long home at NASA’s Wallops Flight Facility in Virginia, for the final time. The aircraft is embarking on a new adventure to serve and protect in the state of California where it is now under the ownership of the California Department of Forestry and Fire Protection (CAL FIRE).
The transition of the C-130 to CAL FIRE is part of a long-running, NASA-wide aircraft enterprise-management activity to consolidate the aircraft fleet and achieve greater operational efficiencies while reducing the agency’s infrastructure footprint.
The C-130 Hercules takes off for the final time from NASA’s Wallops Flight Facility in Virginia.NASA/Garon Clark “Our C-130 and the team behind it has served with great distinction over the past decade,” said David L. Pierce, Wallops Flight Facility director. “While our time with this amazing airframe has come to a close, I’m happy to see it continue serving the nation in this new capacity with CAL FIRE.”
The research and cargo aircraft, built in 1986, was acquired by NASA in 2015. Over the past decade, the C-130 supported the agency’s airborne scientific research, provided logistics support and movement of agency cargo, and supported technology demonstration missions. The aircraft logged approximately 1,820 flight hours in support of missions across the world during its time with the agency.
Additional aircraft housed at NASA Wallops will be relocated to NASA’s Langley Research Center in Hampton, Virginia, in the coming months.
For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops.
By Olivia Littleton
NASA’s Wallops Flight Facility, Wallops Island, Va.
Share
Details
Last Updated Apr 18, 2025 EditorOlivia F. LittletonLocationWallops Flight Facility Related Terms
Wallops Flight Facility Explore More
4 min read NASA to Launch Three Rockets from Alaska in Single Aurora Experiment
UPDATE March 31, 2025: The third and final rocket of the AWESOME mission launched on Saturday,…
Article 4 weeks ago 5 min read NASA Super Pressure Balloons Return to New Zealand for Test Flights
Article 1 month ago 2 min read NASA Wallops Breaks Ground on New Causeway Bridge
Article 4 days ago View the full article
-
By NASA
Credit: NASA NASA is marking progress in strengthening the agency’s small business partnerships, supply chain resiliency, and domestic space manufacturing capabilities.
Under the agency’s enhanced Mentor-Protégé Program, NASA has announced the first Mentor-Protégé Agreement between L3Harris Technologies, a NASA large prime contractor, and Parametric Machining, Inc., a veteran-owned small business.
This agreement will help advance NASA’s mission by fostering innovation and reinforcing the agency’s supply chain. As NASA continues to advance the Artemis campaign, deep space exploration, and aeronautics research, partnerships like this are essential in securing a resilient and efficient supplier base.
“We are excited to facilitate the first agreement under the newly enhanced NASA Mentor-Protégé Program,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs. “This agreement, and the many that will follow, promote domestic ingenuity and manufacturing and provide opportunities for small businesses to grow and thrive within NASA’s industrial base.”
Through Mentor-Protégé Agreements, large prime contractors serve as mentors, offering technical and business development assistance to small business protégés. This collaboration not only enhances protégés’ capabilities but also provides mentors with a stronger, more reliable subcontracting base, enabling them to fill their supply chain gaps. Additionally, protégés gain potential prime and subcontract opportunities, enhanced technical capabilities, technical training, and long-term business growth.
Relaunched in November 2024, the merit-based NASA Mentor-Protégé Program is designed to bolster small business development while strengthening NASA’s supply chain and industry base. By focusing on a targeted set of North American Industry Classification System codes, including research and development and aerospace manufacturing, NASA ensures that participating small businesses are well-positioned to contribute to long-term mission objectives.
The agreement between L3Harris Technologies and Parametric Machining, Inc. demonstrates the value of NASA’s revamped Mentor-Protégé Program. NASA is actively accepting new Mentor-Protégé Agreements and encourages large prime contractors and small businesses to explore the benefits of forming partnerships under the program. Participating in the Mentor-Protégé Program provides:
Enhanced manufacturing capabilities and subcontracting opportunities. Mentorship from experienced NASA prime contractors. Opportunities to advance competitiveness in government contracts. Access to technical assistance and business development support. A pathway for small businesses to integrate into NASA’s supply chain. L3Harris Technologies is a prime contractor at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, supporting the Geostationary Extended Observations Imager Instrument Implementation contract. NASA Goddard also will serve as the administering center for this agreement.
For more information on NASA’s Mentor-Protégé Program and how to participate, visit:
https://www.nasa.gov/osbp/mentor-protege-program
-end-
Share
Details
Last Updated Apr 17, 2025 ContactTiernan P. Doyletiernan.doyle@nasa.govLocationNASA Headquarters Related Terms
Office of Small Business Programs (OSBP) View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Piloted by NASA’s Tim Williams, the ER-2 science aircraft ascends for one of the final science flights for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. As a collaboration between engineers, scientists, and aircraft professionals, GLOVE aims to improve satellite data products for Earth Science applications. NASA/Steve Freeman In February, NASA’s ER-2 science aircraft flew instruments designed to improve satellite data products and Earth science observations. From data collection to processing, satellite systems continue to advance, and NASA is exploring how instruments analyzing clouds can improve data measurement methods.
Researchers participating in the Goddard Space Flight Center Lidar Observation and Validation Experiment (GLOVE) used the ER-2 – based at NASA’s Armstrong Flight Research Center in Edwards, California – to validate satellite data about cloud and airborne particles in the Earth’s atmosphere. Scientists are using GLOVE instruments installed onboard the aircraft to measure and validate data about clouds generated by satellite sensors already orbiting in space around Earth.
“The GLOVE data will allow us to test new artificial intelligence algorithms in data processing,” said John Yorks, principal investigator for GLOVE and research physical scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These algorithms aim to improve the cloud and aerosol detection in data produced by the satellites.”
Jennifer Moore, a researcher from NASA’s Goddard Space Flight Center, checks the cabling on the Roscoe instrument at NASA’s Armstrong Flight Research Center in Edwards, California, for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. The Roscoe instrument will be uploaded onto NASA’s ER-2 science aircraft.NASA/Steve Freeman The validation provided by GLOVE is crucial because it ensures the accuracy and reliability of satellite data. “The instruments on the plane provide a higher resolution measurement ‘truth’ to ensure the data is a true representation of the atmospheric scene being sampled,” Yorks said.
The ER-2 flew over various parts of Oregon, Arizona, Utah, and Nevada, as well as over the Pacific Ocean off the coast of California. These regions reflected various types of atmospheres, including cirrus clouds, marine stratocumulus, rain and snow, and areas with multiple types of clouds.
“The goal is to improve satellite data products for Earth science applications,” Yorks said. “These measurements allow scientists and decision-makers to confidently use this satellite information for applications like weather forecasting and hazard monitoring.”
Researcher Jackson Begolka from the University of Iowa examines instrument connectors onboard the ER-2 aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 1, 2025. The GLOVE instrument will validate data from satellites orbiting the Earth.NASA/Steve Freeman The four instruments installed on the ER-2 were the Cloud Physics Lidar, the Roscoe Lidar, the enhanced Moderate Resolution Imaging Spectroradiometer Airborne Simulator, and the Cloud Radar System. These instruments validate data produced by sensors on NASA’s Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) and the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), a joint venture between the ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency).
“Additionally, the EarthCARE satellite is flying the first ever Doppler radar for measurements of air motions within clouds,” Yorks said. While the ER-2 is operated by pilots and aircrew from NASA Armstrong, these instruments are supported by scientists from NASA Goddard, NASA’s Ames Research Center in California’s Silicon Valley, and the Naval Research Laboratory office in Monterey, California, as well as by students from the University of Iowa in Iowa City and the University of Maryland College Park.
Share
Details
Last Updated Apr 16, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Airborne Science Earth Science Earth Science Technology Office Earth's Atmosphere ER-2 Goddard Space Flight Center Explore More
4 min read Hubble Provides New View of Galactic Favorite
As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
Article 9 hours ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
Article 1 day ago 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe
Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that…
Article 1 day ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are developing the first space-based quantum sensor for measuring gravity. Supported by NASA’s Earth Science Technology Office (ESTO), this mission will mark a first for quantum sensing and will pave the way for groundbreaking observations of everything from petroleum reserves to global supplies of fresh water.
A map of Earth’s gravity. Red indicates areas of the world that exert greater gravitational pull, while blue indicates areas that exert less. A science-grade quantum gravity gradiometer could one day make maps like this with unprecedented accuracy. Image Credit: NASA Earth’s gravitational field is dynamic, changing each day as geologic processes redistribute mass across our planet’s surface. The greater the mass, the greater the gravity.
You wouldn’t notice these subtle changes in gravity as you go about your day, but with sensitive tools called gravity gradiometers, scientists can map the nuances of Earth’s gravitational field and correlate them to subterranean features like aquifers and mineral deposits. These gravity maps are essential for navigation, resource management, and national security.
“We could determine the mass of the Himalayas using atoms,” said Jason Hyon, chief technologist for Earth Science at JPL and director of JPL’s Quantum Space Innovation Center. Hyon and colleagues laid out the concepts behind their Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument in a recent paper in EPJ Quantum Technology.
Gravity gradiometers track how fast an object in one location falls compared to an object falling just a short distance away. The difference in acceleration between these two free-falling objects, also known as test masses, corresponds to differences in gravitational strength. Test masses fall faster where gravity is stronger.
QGGPf will use two clouds of ultra-cold rubidium atoms as test masses. Cooled to a temperature near absolute zero, the particles in these clouds behave like waves. The quantum gravity gradiometer will measure the difference in acceleration between these matter waves to locate gravitational anomalies.
Using clouds of ultra-cold atoms as test masses is ideal for ensuring that space-based gravity measurements remain accurate over long periods of time, explained Sheng-wey Chiow, an experimental physicist at JPL. “With atoms, I can guarantee that every measurement will be the same. We are less sensitive to environmental effects.”
Using atoms as test masses also makes it possible to measure gravity with a compact instrument aboard a single spacecraft. QGGPf will be around 0.3 cubic yards (0.25 cubic meters) in volume and weigh only about 275 pounds (125 kilograms), smaller and lighter than traditional space-based gravity instruments.
Quantum sensors also have the potential for increased sensitivity. By some estimates, a science-grade quantum gravity gradiometer instrument could be as much as ten times more sensitive at measuring gravity than classical sensors.
The main purpose of this technology validation mission, scheduled to launch near the end of the decade, will be to test a collection of novel technologies for manipulating interactions between light and matter at the atomic scale.
“No one has tried to fly one of these instruments yet,” said Ben Stray, a postdoctoral researcher at JPL. “We need to fly it so that we can figure out how well it will operate, and that will allow us to not only advance the quantum gravity gradiometer, but also quantum technology in general.”
This technology development project involves significant collaborations between NASA and small businesses. The team at JPL is working with AOSense and Infleqtion to advance the sensor head technology, while NASA’s Goddard Space Flight Center in Greenbelt, Maryland is working with Vector Atomic to advance the laser optical system.
Ultimately, the innovations achieved during this pathfinder mission could enhance our ability to study Earth, and our ability to understand distant planets and the role gravity plays in shaping the cosmos. “The QGGPf instrument will lead to planetary science applications and fundamental physics applications,” said Hyon.
To learn more about ESTO visit: https://esto.nasa.gov
Share
Details
Last Updated Apr 15, 2025 Editor NASA Science Editorial Team Contact Gage Taylor gage.taylor@nasa.gov Location NASA Goddard Space Flight Center Related Terms
Science-enabling Technology Earth Science Technology Office Technology Highlights Explore More
5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Article
4 weeks ago
4 min read Novel Metasurface Optical Element Could Shed New Light on Atmospheric Aerosols
Article
1 month ago
5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
Article
2 months ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.