Jump to content

DOD assessing document disclosures and implementing mitigation measures


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Suicide prevention is a top military priority every day, but takes on even greater focus each September, designated since 2008 as National Suicide Prevention month.

      View the full article
    • By NASA
      On 5/13/24, in alignment with the NASA Interagency Agreement with the US Department of State Advancing Science, Technology, Engineering, and Math in Bhutan through Increased Earth Observation Capacity, Aparna R. Phalke, Sarah Cox and Tony Kim (ST11) traveled to Thimphu, Bhutan, to represent the SERVIR SCO at the official launch on 5/17/24 of the “Farm Action Toolkit” service (https://crops.servirglobal.net/dashboard/) with the implementing partners from Bhutan Druk Holdings and Investments (DHI) Super Fablab, National Statistical Bureau (NSB), Department of Agriculture, National Center of Organic Agriculture, National Land Commission and GovTech Bhutan. The service was presented with meaningful opening remarks from Manish Rai (DHI), Andrea Goodman (U.S. Department of State), Sangay Dorji (Retired Head of the Environmental Office, Ministry of Economic Affairs) and Tony Kim . Also in attendance were Bhutan Foundation officials in addition to implementing partners. The “Farm Action Toolkit” co-developed by SERVIR and Bhutan’s implementing partners to support their mission on self-sufficiency for food and save operational costs. This service provides field-scale (30-m) crop area and yields related products and algorithms including 2002 to 2023 crop/non crop maps, rice area maps, maize area maps and rice yield estimations.
      Following the launch of the Farm Action Toolkit service in Thimphu, Bhutan, a SERVIR SCO service team led by Aparna Phalke and Bhutan’s implementing partner team from DHI performed field surveys of agricultural fields across the Thimphu, Punakha and Paro area of Bhutan using GPS, and Helmet data collection with GoPro cameras and drones (5/23-25/24). The Helmet data collection with GoPro cameras tool method was replicated from SERVIR’s Applied Science Team PI Catherine Nakalemb’s project in SERVIR-West Africa. The team also interviewed individual farmers from areas covering rice cultivation with pest, disease and water related issues. The implementing partner and SERVIR SCO team also collected market analysis data consisting of fifty plus vendors and vendors cum farmers interviews on agricultural commodities and the supply chain (5/18-19/24). These field surveys will play a significant role in the operation and adoption of the Farm Action Toolkit service by implementing partners
      In-person outreach events were conducted at the Royal Thimphu College and College of Natural Resources, Royal University of Bhutan (RUB) on 5/14/24 and 5/24/24, respectively. Over 100 students from each academic institution participated in the outreach events, which focused on NASA milestones and how to leverage Earth observations to address immediate environmental issues in Bhutan.
      These activities are part of a NASA Interagency Agreement with the US Department of State – Advancing Science, Technology, Engineering, and Math in Bhutan through Increased Earth Observation Capacity – a collaboration that also includes NASA’s DEVELOP, ARSET, and GLOBE programs.
      View the full article
    • By Space Force
      Buckley Space Force Base is one of many locations across the Department of Defense where wildlife biologists are working to monitor and restore habitats for monarchs butterflies to help facilitate this migration.

      View the full article
    • By NASA
      3 min read
      Hubble Measures the Distance to a Supernova
      This NASA/ESA Hubble Space Telescope image features the galaxy NGC 3810. ESA/Hubble & NASA, D. Sand, R. J. Foley Measuring the distance to truly remote objects like galaxies, quasars, and galaxy clusters is a crucial task in astrophysics, particularly when it comes to studying the early universe, but it’s a difficult one to complete. We can only measure the distances to a few nearby objects like the Sun, planets, and some nearby stars directly. Beyond that, astronomers need to use various indirect methods; one of the most important examines Type Ia supernovae, and this is where the NASA/ESA Hubble Space Telescope excels.
      NGC 3810, the galaxy featured in this image, was the host of a Type Ia supernova in 2022. In early 2023, Hubble focused on this and a number of other galaxies to closely examine recent Type Ia supernovae. Type Ia supernovae are the result of a white dwarf exploding, and their peak brightness is very consistent. This attribute allows astronomers to use Type Ia supernovae to measure distances: we know how bright a Type Ia supernova should be, so we can tell how far away it must be by how dim it appears. One snag with this method is intergalactic dust. Because intergalactic dust blocks some of the supernova’s light, astronomers need to determine how much light the dust reduces to accurately measure the supernova’s brightness and calculate its distance. Hubble’s unique capabilities offer them a clever way of doing this.
      Astronomers use Hubble to take images of the same Type Ia supernovae in ultraviolet light, which the dust almost completely blocks out, and in infrared light, which passes through dust nearly unaffected. By carefully noting how much light comes through at each wavelength, astronomers can determine how much dust lies between Hubble and the supernova, letting them confidently calibrate the relationship between a supernova’s brightness and its distance. Hubble’s unique capability to observe in ultraviolet and infrared wavelengths of light in great detail with the same instrument makes it the perfect tool for these types of observations. Indeed, some of the data used to make this beautiful image of NGC 3810 focused on its 2022 supernova. You can see it as a point of light just below the galactic nucleus in the annotated image below.
      This annotated Hubble image of NGC 3810 denotes the location of the Type Ia supernovae SN 2022zut, It was the eighteen thousand, one hundred and forty-second supernova found in 2022! ESA/Hubble & NASA, D. Sand, R. J. Foley There are many ways to measure cosmic distances, but Type Ia supernovae are one of the most useful and accurate tools because they are so bright. Astronomers must use other methods as well, either as an independent check against other distance measurements, or to measure at much closer or farther distances. One such method, that also works for galaxies, is comparing their rotation speed to their brightness; based on that method, NGC 3810 is about 50 million light-years from Earth.

      Download the featured image


      Download the annotated image

      Explore More

      Hubble Space Telescope


      Hubble’s Galaxies


      The Death Throes of Stars


      Exploring the Birth of Stars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jul 12, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies Stars Supernovae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Discovering a Runaway Universe


      Our cosmos is growing, and that expansion rate is accelerating.


      Hubble E-books



      Hubble Images


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This view of Jupiter’s icy moon Europa was captured by the JunoCam imager aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022.Image data: NASA/JPL-Caltech/SwRI/MSSS
      Image processing: Kevin M. Gill CC BY 3.0  The ice-covered Jovian moon generates 1,000 tons of oxygen every 24 hours – enough to keep a million humans breathing for a day.
      Scientists with NASA’s Juno mission to Jupiter have calculated the rate of oxygen being produced at the Jovian moon Europa to be substantially less than most previous studies. Published on March 4 in Nature Astronomy, the findings were derived by measuring hydrogen outgassing from the icy moon’s surface using data collected by the spacecraft’s Jovian Auroral Distributions Experiment (JADE) instrument.
      The paper’s authors estimate the amount of oxygen produced to be around 26 pounds every second (12 kilograms per second). Previous estimates range from a few pounds to over 2,000 pounds per second (over 1,000 kilograms per second). Scientists believe that some of the oxygen produced in this manner could work its way into the moon’s subsurface ocean as a possible source of metabolic energy.
      With an equatorial diameter of 1,940 miles (3,100 kilometers), Europa is the fourth largest of Jupiter’s 95 known moons and the smallest of the four Galilean satellites. Scientists believe a vast internal ocean of salty water lurks beneath its icy crust, and they are curious about the potential for life-supporting conditions to exist below the surface.
      This illustration shows charged particles from Jupiter impacting Europa’s surface, splitting frozen water molecules into oxygen and hydrogen molecules. Scientists believe some of these newly created oxygen gases could migrate toward the moon’s subsurface ocean, as depicted in the inset image.NASA/JPL-Caltech/SWRI/PU It is not just the water that has astrobiologists’ attention: The Jovian moon’s location plays an important role in biological possibilities as well. Europa’s orbit places it right in the middle of the gas giant’s radiation belts. Charged, or ionized, particles from Jupiter bombard the icy surface, splitting water molecules in two to generate oxygen that might find its way into the moon’s ocean.
      Click here for an interactive 3D visualization of Europa “Europa is like an ice ball slowly losing its water in a flowing stream. Except, in this case, the stream is a fluid of ionized particles swept around Jupiter by its extraordinary magnetic field,” said JADE scientist Jamey Szalay from Princeton University in New Jersey. “When these ionized particles impact Europa, they break up the water-ice molecule by molecule on the surface to produce hydrogen and oxygen. In a way, the entire ice shell is being continuously eroded by waves of charged particles washing up upon it.”
      Capturing the Bombardment
      As Juno flew within 220 miles (354 kilometers) of Europa at 2:36 p.m. PDT Sept. 29, 2022, JADE identified and measured hydrogen and oxygen ions that had been created by the bombarding charged particles and then “picked up” by Jupiter’s magnetic field as it swept past the moon.
      “Back when NASA’S Galileo mission flew by Europa, it opened our eyes to the complex and dynamic interaction Europa has with its environment. Juno brought a new capability to directly measure the composition of charged particles shed from Europa’s atmosphere, and we couldn’t wait to further peek behind the curtain of this exciting water world,” said Szalay. “But what we didn’t realize is that Juno’s observations would give us such a tight constraint on the amount of oxygen produced in Europa’s icy surface.”
      Juno carries 11 state-of-the-art science instruments designed to study the Jovian system, including nine charged-particle and electromagnetic-wave sensors for studying Jupiter’s magnetosphere.
      “Our ability to fly close to the Galilean satellites during our extended mission allowed us to start tackling a breadth of science, including some unique opportunities to contribute to the investigation of Europa’s habitability,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “And we’re not done yet. More moon flybys and the first exploration of Jupiter’s close ring and polar atmosphere are yet to come.”
      Oxygen production is one of many facets that NASA’s Europa Clipper mission will investigate when it arrives at Jupiter in 2030. The mission has a sophisticated payload of nine science instruments to determine if Europa has conditions that could be suitable for life.
      Now Bolton and the rest of the Juno mission team are setting their sights on another Jovian world, the volcano-festooned moon Io. On April 9, the spacecraft will come within about 10,250 miles (16,500 kilometers) of its surface. The data Juno gathers will add to findings from past Io flybys, including two extremely close approaches of about 932 miles (1,500 kilometers) on Dec. 30, 2023, and Feb. 3, 2024.
      More About the Mission
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
      More information about Juno is available at:
      https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2024-020
      Share
      Details
      Last Updated Mar 04, 2024 Related Terms
      Juno Europa Jupiter Jupiter Moons Explore More
      4 min read Spot the King of Planets: Observe Jupiter
      Jupiter is easy to observe, and well-documented by astronomers. Learn more about the King of…
      Article 3 weeks ago 2 min read For Your Processing Pleasure: The Sharpest Pictures of Jupiter’s Volcanic Moon Io in a Generation
      NASA’s Juno spacecraft just made the closest flybys of Jupiter’s moon Io that any spacecraft has carried…
      Article 4 weeks ago 6 min read Poised for Science: NASA’s Europa Clipper Instruments Are All Aboard
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...