Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Career Spotlight: Technologist (Ages 14-18)
      What does a technologist do?
      Technologists are professionals who research, develop, and test emerging technologies. They also find useful ways to put new technologies to work. A technologist is an expert in a specific type of technology, often within a specific field. Many industries rely on innovations developed by technologists. Some of these include aerospace, research, manufacturing, healthcare, and information technology.
      NASA technologists make use of technological advancements to improve NASA’s capabilities and better meet the needs of its missions. They also oversee how technologies developed by NASA can improve life on Earth through commercial products. These products are called spinoffs. For examples of how NASA shows up in your everyday life, visit: https://spinoff.nasa.gov.
      What are some technology careers at NASA?
      Instrument scientist: Works to improve or develop instruments that collect data. In aerospace, an instrument is a sensor or other device that takes measurements or gathers scientific information. This role may include working with other specialties to design, create, and test scientific instruments.
      Data scientist: Uses computer science to create tools that manage data. Some of the tasks a data scientist might perform include developing predictive models, machine learning algorithms, or software to extract useful information from large sets of data.
      Information technology (IT) specialist: Designs, maintains, implements, and protects IT systems across the agency. Develops software, manages IT projects, and develops applications to support both organizational and mission operations.
      One of three small lunar rovers that are part of a NASA technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration) is prepared for shipping in a clean room at the agency’s Jet Propulsion Laboratory in Southern California.NASA/JPL-Caltech How can I become a technologist?
      There are many different types of careers in technology, and the requirements vary. While you’re in high school, explore the possibilities and learn about the specialties and roles that will fit your interests. Then, investigate the academic path and experience you’ll need to eventually be hired into those roles. Current job openings, guidance counselors, and mentors can shed light on the types of certifications or degrees required. With this information, you can begin planning for the skills and education you’ll need.
      It’s important to remember that technology is always advancing. Even after you’ve launched your technologist career, a “lifelong learning” mindset will help you keep up with new innovations and skills.
      How can I start preparing today to become a technologist?
      Start growing your technology skills today with hands-on activities created by NASA STEM. Looking for something more involved? Many of NASA’s student challenges, competitions, and activities offer authentic experience in aerospace technology, computer science, and more.
      Students aged 16 and up who are U.S. citizens are eligible to apply for a paid NASA internship. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.
      Frank Pena, test director, checks on the 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA Advice from NASA technologists
      “Think about your personal interests and passions, and also the impact you’d like your work to have. What do you feel personally interested in when it comes to science and technology? Is there a problem that you think is very important for our society to solve? Often there is a research or technology field that can combine those two things!” – Olivia Tyrrell, NASA research engineer
      What do you feel personally interested in when it comes to science and technology?
      Olivia Tyrrell
      NASA Research Engineer
      “If you like to create things or find solutions to problems, working in technology is a great choice. Scientists identify problems, engineers solve problems, but ultimately, we need to create new technologies, new things, new gadgets.  Technologists are building the next generation toolbox for engineers and scientists to pull from, enabling everyone to solve problems in more effective and innovative ways. (Technologists invent things… what’s cooler than that?!)” – Kristen John, technical integration manager for lunar dust mitigation
      Additional Resources
      NASA Data Science, Cybersecurity, and IT Careers
      NASA Space Technology
      Technology | NASA+
      Keep Exploring Discover More Topics From NASA
      For Students Grades 9-12
      NASA Internship Programs
      NASA STEM Opportunities and Activities For Students
      Careers
      View the full article
    • By NASA
      4 Min Read Career Spotlight: Scientist (Ages 14-18)
      What does a scientist do?
      Science is about exploring answers to questions. A scientist uses research and evidence to form hypotheses, test variables, and then share their findings.
      NASA scientists conduct groundbreaking research to answer some of humanity’s most profound questions. Most scientists start as project scientists in their early careers. They spend a lot of time publishing their peer-reviewed literature and presenting scientific research. Senior-level scientists provide leadership in the NASA community, actively publish research group work, and take on management roles.
      What are some of the different types of scientists that work at NASA?
      Many types of scientists work at NASA to support its wide variety of missions. The agency’s scientists research the foods we send to space, the habitability of other planets, the weather in space, and so much more. Here are a few examples of types of scientists at NASA.
      Planetary scientist: Discovers and studies the planetary objects in our solar system. These efforts shed light on the history of the solar system and the distribution of life within it.
      Astrobiologist: Studies the origins of life, how life evolves, and where it might be found in the universe.
      Astrophysicist: Studies the physical and chemical structures of stars, planets, and other natural objects found in space.
      Biological/physical scientist: Studies how biological and physical processes work in challenging environments like space. This information helps NASA design longer human space missions and also benefits life on Earth.
      Earth scientist: Uses observations and data from satellites and other sources to study Earth’s atmosphere, oceans, land cover, and land use.
      Heliophysicist: Studies the Sun and its behaviors, such as magnetic fields, solar wind, and space weather. This knowledge helps us better understand and predict the Sun’s effects on Earth and in space.
      How can I become a scientist?
      Focus on building your scientific knowledge and skills. You can do this by taking challenging academic courses, participating in science fairs, and joining extracurricular activities that have a scientific focus. This is also a good time to research what types of sciences you’re most interested in, possible careers in those fields, and academic degrees required for those jobs.
      Scientists typically need at least a four-year degree. Most pursue a master’s degree or even a doctorate (Ph.D.) to become experts in their field.
      How can I start preparing today to become a scientist?
      Interested in applying some science skills right away? NASA provides a variety of hands-on activities for a range of skill levels. The space agency also offers student challenges, competitions, and activities that provide authentic experience in a variety of science fields. For up-to-date opportunities, visit:
      NASA STEM Opportunities and Activities for Students NASA Science Learning Opportunities NASA also offers paid internships for U.S. citizens aged 16 and up. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.
      Advice from NASA scientists
      “Take advantage of opportunities in different fields like attending summer classes, volunteering on the weekends, visiting museums, attending community lectures, and reading introductory books at the library. These are a few ways to expand your scope of possibility within the sciences, while simultaneously narrowing your focus in a field.” – Angela Garcia, exploration geologist
      “The key to being a scientist is to love asking questions. If you are fascinated about how and why things work — you are already a scientist.”
      Nicola Fox
      NASA Associate Administrator, Science Mission Directorate
      “One general skill that is often overlooked is the ability to write well and clearly. There’s a misconception that being a scientist means using big words and writing in ways that no one understands, when it’s actually the opposite. The ability to communicate your thoughts and ideas so that a child can understand is not easy, but it’s essential for good scientific writing.” – Matt Mickens, NASA horticulturist
      Additional Resources
      Careers in Science and Research
      NASA Science Career Path Navigator
      NASA Science Mission Directorate
      People of NASA Science
      Explore NASA+ Scientist Resources
      Keep Exploring Discover More Topics From NASA
      For Students Grades 9-12
      NASA Internship Programs
      NASA STEM Opportunities and Activities For Students
      Careers
      View the full article
    • By NASA
      Although NASA’s Lucy spacecraft’s upcoming encounter with the asteroid Donaldjohanson is primarily a mission rehearsal for later asteroid encounters, a new paper suggests that this small, main belt asteroid may have some surprises of its own. New modeling indicates that Donaldjohanson may have been formed about 150 million years ago when a larger parent asteroid broke apart; its orbit and spin properties have undergone significant evolution since.
      This artist’s concept compares the approximate size of Lucy’s next asteroid target, Donaldjohanson, to the smallest main belt asteroids previously visited by spacecraft — Dinkinesh, visited by Lucy in November 2023, and Steins — as well as two recently explored near-Earth asteroids, Bennu and Ryugu. Credits: SwRI/ESA/OSIRIS/NASA/Goddard/Johns Hopkins APL/NOIRLab/University of Arizona/JAXA/University of Tokyo & Collaborators When the Lucy spacecraft flies by this approximately three-mile-wide space rock on April 20, 2025, the data collected could provide independent insights on such processes based on its shape, surface geology and cratering history.
      “Based on ground-based observations, Donaldjohanson appears to be a peculiar object,” said Simone Marchi, deputy principal investigator for Lucy of Southwest Research Institute in Boulder, Colorado and lead author of the research published in The Planetary Science Journal. “Understanding the formation of Donaldjohanson could help explain its peculiarities.”
      “Data indicates that it could be quite elongated and a slow rotator, possibly due to thermal torques that have slowed its spin over time,” added David Vokrouhlický, a professor at the Charles University, Prague, and co-author of the research.
      Lucy’s target is a common type of asteroid, composed of silicate rocks and perhaps containing clays and organic matter. The new paper indicates that Donaldjohanson is a likely member of the Erigone collisional asteroid family, a group of asteroids on similar orbits that was created when a larger parent asteroid broke apart. The family originated in the inner main belt not very far from the source regions of the near-Earth asteroids Bennu and Ryugu, recently visited respectively by NASA’s OSIRIS-REx and JAXA’s (Japan Aerospace Exploration Agency’s) Hayabusa2 missions.
      “We can hardly wait for the flyby because, as of now, Donaldjohanson’s characteristics appear very distinct from Bennu and Ryugu. Yet, we may uncover unexpected connections,” added Marchi.
      “It’s exciting to put together what we’ve been able to glean about this asteroid,” said Keith Noll, Lucy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But Earth-based observing and theoretical models can only take us so far – to validate these models and get to the next level of detail we need close-up data. Lucy’s upcoming flyby will give us that.”
      Donaldjohanson is named for the paleontologist who discovered Lucy, the fossilized skeleton of an early hominin found in Ethiopia in 1974, which is how the Lucy mission got its name. Just as the Lucy fossil provided unique insights into the origin of humanity, the Lucy mission promises to revolutionize our knowledge of the origin of humanity’s home world. Donaldjohanson is the only named asteroid so far to be visited while its namesake is still living.
      “Lucy is an ambitious NASA mission, with plans to visit 11 asteroids in its 12-year mission to tour the Trojan asteroids that are located in two swarms leading and trailing Jupiter,” said SwRI’s Dr. Hal Levison, mission principal investigator at the Boulder, Colorado branch of Southwest Research Institute in San Antonio, Texas. “Encounters with main belt asteroids not only provide a close-up view of those bodies but also allow us to perform engineering tests of the spacecraft’s innovative navigation system before the main event to study the Trojans. These relics are effectively fossils of the planet formation process, holding vital clues to deciphering the history of our solar system.”
      Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the agency’s Science Mission Directorate in Washington.
      By Deb Schmid and Katherine Kretke, Southwest Research Institute
      Media Contact:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 17, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center Lucy Missions Planetary Science Planetary Science Division Explore More
      3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
      Article 3 weeks ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
      Article 2 years ago 4 min read NASA Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex
      Article 10 months ago View the full article
    • By NASA
      3 Min Read Career Spotlight: Engineer (Ages 14-18)
      What does an engineer do?
      An engineer applies scientific principles to design, build, and test machines, systems, or structures to meet specific needs. They follow the steps of the engineering design process to ensure their designs work as planned while meeting a variety of requirements, including size, weight, safety, and cost.
      NASA hires several types of engineers to help tackle a range of missions. Whether it’s creating quieter supersonic aircraft, building powerful space telescopes to study the cosmos, or developing spacecraft to take humanity to the Moon, Mars, and beyond, NASA pushes the boundaries of engineering, giving us greater knowledge of our universe and a better quality of life here on Earth.
      What are the different types of engineering?
      Aerospace engineer: Applies engineering principles to design hardware and software specific to flight systems for use in Earth’s atmosphere or in space. Chemical engineer: Uses chemistry to conduct research or develop new materials. Civil engineer: Designs human-made structures, such as launch pads, test stands, or a future lunar base. Electrical engineer: Specializes in the design and testing of electronics such as computers, motors, and navigation systems. Mechanical engineer: Designs and tests mechanical equipment and systems, such as rocket engines, aircraft frames, and astronaut tools. How can I become an engineer?
      High school is the perfect time to build a solid foundation of science and math skills through challenging academic courses as well as extracurricular activities, such as science clubs, robotics teams, or STEM camps in your area. You can also start researching what type of engineering is right for you, what colleges offer those engineering programs, and what you need to do to apply to those colleges.
      Engineering roles typically require at least a bachelor’s degree.
      How can I start preparing today to become an engineer?
      Looking for some engineering experiences you can try right away? NASA STEM offers hands-on activities for a variety of ages and skill levels. Engineering includes iteration – repeating something and making changes in an effort to learn more and improve the process or the design. When you try these activities, make a small change each time you repeat the process, and see whether your design improves.
      NASA’s student challenges and competitions give teams the opportunity to gain authentic experience by taking on some of the technological challenges of spaceflight and aviation.
      NASA also offers paid internships for U.S. citizens aged 16 and up. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.
      Advice from NASA engineers
      “A lot of people think that just because they are more artistic or more creative, that they’re not cut out for STEM fields. But in all honesty, engineers and scientists have to be creative and have to be somewhat artistic to be able to come up with new ideas and see how they can solve the problems in the world around them.” – Sam Zauber, wind tunnel test engineer
      “Students today have so many opportunities in the STEM area that are available to them. See what you like. See what you're good at. See what you don't like. Learn all there is to learn, and then you can really choose your own path. As long as you have the aptitude and the willingness to learn, you're already there.”
      Heather Oravec
      Aerospace and Geotechnical Research Engineer
      “Joining clubs and participating in activities that pique your interests is a great way to develop soft skills – like leadership, communication, and the ability to work with others – which will prepare you for future career opportunities.” – Estela Buchmann, navigation, guidance, and control systems engineer
      Additional Resources
      Explore NASA+ Engineering Resources Learner Opportunities – NASA Science Career Aspirations with Hubble Keep Exploring Discover More Topics From NASA
      Careers in Engineering
      Join Artemis
      NASA App
      For Students Grades 9-12
      View the full article
    • By European Space Agency
      Image: Hera: Target Deimos View the full article
  • Check out these Videos

×
×
  • Create New...