Jump to content

NASA’s High-Resolution Air Quality Control Instrument Launches


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
      Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
      With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
      “Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
      Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
      Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission. 
      One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
      Judges Needed
      NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
      The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      To learn more about the challenge, visit:
      https://www.nasa.gov/power-to-explore
      -end-
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov


      Kristin Jansen
      Glenn Research Center, Cleveland
      216-296-2203
      kristin.m.jansen@nasa.gov
      Share
      Details
      Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
      Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
    • By Space Force
      The Space Force senior leaders traveled to Europe for meetings with defense and military space leaders from Norway, Sweden, and NATO to reaffirm and strengthen space security cooperation.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      About 20,000 guests visited NASA’s tent at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024. NASA Lee esta historia en Español aquí.
      In September, the three NASA centers in California came together to share aerospace innovations with thousands of guests at the Miramar Air Show in San Diego, California. Agency experts talked about the exciting work NASA does while exploring the secrets of the universe for the benefit of all.
      Under a large tent near the airfield, guests perused exhibits from different centers and projects, like a model of the Innovator rover or the Alta-X drone, from Sept. 27 through 29. Agency employees from NASA’s Armstrong Flight Research Center in Edwards, California; Ames Research Center in Moffett Field, California; and Jet Propulsion Laboratory (JPL) in Southern California guided guests through tours and presentations and shared messages about NASA missions.
      “The airshow is about the people just as much as it is about the aircraft and technology,” said Derek Abramson, chief engineer for the Subscale Flight Research Laboratory at NASA Armstrong. “I met many new people, worked with an amazing team, and developed a comradery with other NASA centers, talking about what we do here as a cohesive organization.”
      Experts like flight controls engineer Felipe Valdez shared the NASA mission with air show guests, and explained the novelty of airborne instruments like the Alta-X drone at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA On Sept. 29, pilots from Armstrong joined the event to take photos with guests and answer questions from curious or enthusiastic patrons. One air show guest had a special moment with NASA pilot Jim Less.
      “One of my favorite moments was connecting with a young man in his late teens who stopped by the exhibit tent numerous times, all in hopes of being able to meet Jim Less, our X-59 pilot,” said Kevin Rohrer, chief of Communications at NASA Armstrong. “It culminated with a great conversation with the two and Jim [Less] autographing a model of the X-59 aircraft the young man had been carrying around.”
      “I look forward to this tradition continuing, if not at this venue, at some other event in California,” Rohrer continued. “We have a lot of minds hungry and passionate to learn more about all of NASA missions.”
      The Miramar Air Show is an annual event that happens at the Miramar Air Base in San Diego, California.
      Professionals like Leticha Hawkinson, center right, and Haig Arakelian, center left, shared learning and career opportunities for NASA enthusiasts visiting the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA Share
      Details
      Last Updated Oct 30, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Ames Research Center Careers Events Jet Propulsion Laboratory What We Do Explore More
      3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
      Article 18 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago 10 min read Ken Iliff: Engineering 40 Years of Success
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aircraft Flown at Armstrong
      Armstrong People
      Armstrong Capabilities & Facilities
      View the full article
    • By NASA
      The Rocky Mountains in Colorado, as seen from the International Space Station. Snowmelt from the mountainous western United States is an essential natural resource, making up as much as 75% of some states’ annual freshwater supply. Summer heat has significant effects in the mountainous regions of the western United States. Melted snow washes from snowy peaks into the rivers, reservoirs, and streams that supply millions of Americans with freshwater—as much as 75% of the annual freshwater supply for some states.
      But as climate change brings winter temperatures to new highs, these summer rushes of freshwater can sometimes slow to a trickle.
      “The runoff supports cities most people wouldn’t expect,” explained Chris Derksen, a glaciologist and Research Scientist with Environment and Climate Change Canada. “Big cities like San Francisco and Los Angeles get water from snowmelt.”
      To forecast snowmelt with greater accuracy, NASA’s Earth Science Technology Office (ESTO) and a team of researchers from the University of Massachusetts, Amherst, are developing SNOWWI, a dual-frequency synthetic aperture radar that could one day be the cornerstone of future missions dedicated to measuring snow mass on a global scale – something the science community lacks.
      SNOWWI aims to fill this technology gap. In January and March 2024, the SNOWWI research team passed a key milestone, flying their prototype for the first time aboard a small, twin-engine aircraft in Grand Mesa, Colorado, and gathering useful data on the area’s winter snowfields.
      “I’d say the big development is that we’ve gone from pieces of hardware in a lab to something that makes meaningful data,” explained Paul Siqueira, professor of engineering at the University of Massachusetts, Amherst, and principal investigator for SNOWWI.
      SNOWWI stands for Snow Water-equivalent Wide Swath Interferometer and Scatterometer. The instrument probes snowpack with two Ku-band radar signals: a high-frequency signal that interacts with individual snow grains, and a low-frequency signal that passes through the snowpack to the ground. 
      The high-frequency signal gives researchers a clear look at the consistency of the snowpack, while the low-frequency signal helps researchers determine its total depth.
      “Having two frequencies allows us to better separate the influence of the snow microstructure from the influence of the snow depth,” said Derksen, who participated in the Grand Mesa field campaign. “One frequency is good, two frequencies are better.”

      The SNOWWI team in Grand Mesa, preparing to flight test their instrument. From an altitude of 4 kilometers (2.5 miles), SNOWWI can map 100 square kilometers (about 38 square miles) in just 30 minutes.
      As both of those scattered signals interact with the snowpack and bounce back towards the instrument, they lose energy. SNOWWI measures that lost energy, and researchers later correlate those losses to features within the snowpack, especially its depth, density, and mass.
      From an airborne platform with an altitude of 2.5 miles (4 kilometers), SNOWWI could map 40 square miles (100 square kilometers) of snowy terrain in just 30 minutes. From space, SNOWWI’s coverage would be even greater. Siqueira is working with Capella Space to develop a space-ready SNOWWI for satellite missions.
      But there’s still much work to be done before SNOWWI visits space. Siqueira plans to lead another field campaign, this time in the mountains of Idaho. Grand Mesa is relatively flat, and Siqueira wants to see how well SNOWWI can measure snowpack tucked in the folds of complex, asymmetrical terrain.
      For Derksen, who spends much of his time quantifying the freshwater content of snowpack in Canada, having a reliable database of global snowpack measurements would be game-changing.
      “Snowmelt is money. It has intrinsic economic value,” he said. “If you want your salmon to run in mountain streams in the spring, you must have snowmelt. But unlike other natural resources, at this time, we really can’t monitor it very well.”
      For information about opportunities to collaborate with NASA on novel, Earth-observing instruments, see ESTO’s catalog of open solicitations with its Instrument Incubator Program here.
      Project Leads: Dr. Paul Siqueira, University of Massachusetts (Principal Investigator); Hans-Peter Marshall, University of Idaho (Co-Investigator)
      Sponsoring Organizations: NASA’s Earth Science Technology Office (ESTO), Instrument Incubator Program (IIP)
      Share








      Details
      Last Updated Oct 29, 2024 Related Terms
      Earth Science Earth Science Technology Office Science-enabling Technology Technology Highlights Explore More
      3 min read Autumn Leaves – Call for Volunteers


      Article


      4 days ago
      3 min read Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions


      Article


      4 days ago
      8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC


      Article


      2 weeks ago
      View the full article
    • By NASA
      A mentor of research scientist Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” Kacenelenbogen pushes beyond her comfort zone to explore the unknown.
      Name: Meloë S. Kacenelenbogen
      Formal Job Classification: Research scientist
      Organization: Climate and Radiation Laboratory, Science Directorate (Code 613)
      Dr. Meloë S. Kacenelenbogen is a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She studies the impact of aerosols on air quality and the Earth’s climate.Photo courtesy of Meloë Kacenelenbogen What do you do and what is most interesting about your role here at Goddard?
      I study the impact of aerosols — suspended particles from, for example, wildfire smoke, desert dust, urban pollution, and volcanic eruptions — on air quality and the Earth’s climate. I use space, air, and ground-based observations, as well as models.
      Why did you become a scientist? What is your educational background?
      I never made a deliberate choice to become a scientist. I started with very little confidence as a child and then built up my confidence by achieving things I thought I could not do. I chose the hardest fields to work on along the way. Science looked hard and so did fluid mechanics, remote sensing, and atmospheric physics. I have failed many times, but I always learn something and move on. I do get scared and maybe even paralyzed for a day or two, but I never let fear or failure immobilize me for long.
      I was born in Maryland, but my family moved to France when I was young, so I am fluent in French. I have a bachelor’s and master’s degree in mechanical engineering, and physical methods in remote sensing from the Université Pierre et Marie Curie (Paris VI, Jussieu). In 2008, I got a Ph.D. in atmospheric physics for applying satellite remote sensing to air quality at the Université des Sciences et Technologies de Lille (USTL), France.
      What are some of your career highlights?
      After my Ph.D., I worked for the Atmospheric Lidar Group at the University of Maryland, Baltimore County (UMBC), on spaceborne and ground-based lidars. In 2009, I got a NASA Post-doctoral Program (NPP) fellowship at the agency’s Ames Research Center in California’s Silicon Valley, where I worked for 13 years on space-based, aircraft-based, and ground-based atmospheric aerosol vertical distribution and aerosol typing.
      In 2022, I came to work at the Climate and Radiation Lab at Goddard.
      What is most interesting about aerosols?
      Aerosols are very topical because they have a huge impact on the air we breathe and our Earth’s climate. The smaller the aerosol, the deeper it can get into our lungs. Among other sources, aerosols can come from cars, factories, or wildfires. We all know that wildfires are becoming bigger and more frequent. They are expected to happen even more frequently in the future due to climate change. Both when I was living in California and here in Maryland, I have experienced first-hand choking from the wildfire smoke. I will always remember how apocalyptic it felt back in the summer of 2020 in California when wildfire smoke was paired with COVID confinement, and the sky turned Mars-like orange.
      Please tell us about your involvement with the Atmosphere Observing System (AOS)?
      I am incredibly lucky to be able to contribute to the next generation of NASA’s satellites. I am working on AOS, which will observe aerosols, clouds, convention, and precipitation in the Earth’s atmosphere. I am part of the team that is helping design several instruments and algorithms.
      My role is to connect this spaceborne observing system to all our other space, ground, and air-based measurements at the time of launch. We are making a mesh of observations to address the science questions, run the algorithms, and validate the spaceborne measurements. I am constantly pushed to expand my horizon and my own knowledge.
      Why do you enjoy always challenging yourself intellectually?
      I started that way. I had no confidence, so I felt that the only way I could build my confidence was to try doing things that scared me. I may sometimes be a little scared, but I am never bored.
      What did you learn from your mentors?
      A few years ago, a mentor shared a quote from André Gide with me that encapsulates what we are talking about: “You cannot discover new oceans unless you have the courage to lose sight of the shore.” In other words, it is OK, maybe preferable, to be out of my comfort zone to explore the unknown as scary as it may be.
      Along the way, it has been extremely important for me to deliberately choose mentors. To me, a good mentor has earned the respect of all who have worked with them, is uplifting, reassuring, and gives me the invaluable guidance and support that I need. I deliberately try to surround myself with the right people. I have been very, very fortunate to find incredible people to encourage me.
      As a mentor, what do you advise?
      I tell them to deliberately choose their mentors. I also tell them that it is OK to be uncomfortable. Being uncomfortable is the nature of our field. To do great things, we often need to be uncomfortable.
      Why do you enjoy working on a team?
      I love working on teams, I love to feed off the positive energy of a team whether I lead it or am part of it. In my field, teamwork with a positive energy is incredibly satisfying. Everybody feeds off everybody’s energy, we go further, are stronger, and achieve more. This may not happen often, but when it does it makes it all worth it.
      What are the happiest moments in your career?
      I am always happiest when the team publishes a paper and all our efforts, are encapsulated in that one well-wrapped and satisfying peer-reviewed paper that is then accessible to everyone online. Every paper we publish feels, to me, the same as a Ph.D. in terms of the work, pain, energy, and then, finally, satisfaction involved.
      What do you hope to achieve in your career?
      I want to have been a major contributor to the mission by the time the AOS satellites launch.
      What do you do for fun?
      I do mixed martial arts. I love the ocean, diving, and sailing. I also love going to art galleries, especially to see impressionist paintings to reconnect with my Parisian past.
      Meloë Kacenelenbogen once shared a sentiment from French author André Gide: “You cannot discover new oceans unless you have the courage to lose sight of the shore.”Photo courtesy of Meloë Kacenelenbogen Who is your favorite author?
      I love Zweig, Kafka, Dostoyevsky, Saint-Exupéry, and Kessel. The latter two wrote a lot about aviators in the early 1900s back in the days when it was new and very dangerous. Those pilots, like Mermoz, were my heroes growing up.
      Who would you like to thank?
      I would like to thank my family for being my rock.
      What are your guiding principles?
      To paraphrase Dostoevsky, everyone is responsible to all men for all men and for everything. I have a strong sense of purpose, pride, justice, and honor. This is how I try to live my life for better or for worse.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Explore More
      6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 6 days ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
      Article 2 weeks ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’
      Article 3 weeks ago Share
      Details
      Last Updated Oct 22, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center People of NASA View the full article
  • Check out these Videos

×
×
  • Create New...