Jump to content

Recommended Posts

Posted
Stage_set_Juice_dress_rehearsal_complete Image:

After months practicing with a ‘fake’ Juice spacecraft, teams at ESA’s mission control centre in Darmstadt, Germany, today got in touch with the real thing. For the first time, mission engineers connected to the Ariane 5 rocket and inside its fairing the Juice spacecraft, for a dress rehearsal of the all-important “network countdown”. 

The dress rehearsal is the moment that ESA’s mission control brings together the various partners and elements of the mission for a final fully integrated test before launch. Today, Juice’s signals streamed into ESA’s Space Operations Centre via an umbilical connection that will be disconnected in the moments before liftoff, joined by mission partners Airbus and Arianespace. 

It is during the network countdown that the Flight Operations Director Andrea Accomazzo performs the well-known ‘final Rollcall’, as he contacts various teams and positions around the globe who each declare – when things are going well – they are “GO” for launch. 

The dress rehearsal is a live re-enactment of this countdown and every step has to go right to declare launch readiness, from setting up the connection to Juice on the launch pad to establishing ground station links across the globe and ensuring all mission control software and systems are up and running. 

This rehearsal comes after months of simulations in the Main Control Room, in which teams fly a spacecraft simulator controlled by devious Simulations Officers in the room below. Their job is to think up all the ways that something can go wrong. 

In this period the teams focussed predominantly on the critical moments after liftoff – the Launch and Early Orbit Phase. Among hundreds of errors, large and small, Juice’s 85 square metre solar arrays failed to deploy, the spacecraft was lost to Earth’s antennas on dozens of occasions and it entered emergency Safe Mode five times. 

Now that simulations are complete and dozens of worrying scenarios have been worked through, it’s time to focus on a nominal launch.  

“For the last time we have practiced critical operations for the complex Juice mission – and everything went perfectly to plan. Next time, we’ll be doing this for real”, explains Andrea Accomazzo, Flight Operations Director for the mission. 

“After speaking to Juice for the first time, we’re ready and couldn’t be more excited for the decade-long conversation about to take place across deep space”.   

Juice has now been installed in its Ariane 5 rocket, fuelled, and final checks are underway before it is rolled out to the launch pad at Europe’s Spaceport in Kourou, French Guiana, for a scheduled launch on 13 April at 13:15 BST (14:15 CEST). 

The mission, ESA’s Jupiter Icy Moons Explorer, will make detailed observations of the giant gas planet and its three large ocean-bearing moons – Ganymede, Callisto and Europa – with a suite of remote sensing, geophysical and in situ instruments. 

Juice will characterise these moons as both planetary objects and possible habitats, explore Jupiter’s complex environment in depth, and study the wider Jupiter system as an archetype for gas giants across the Universe. 

To make all this possible, teams at ESA’s mission control centre in Germany will perform back-to-back critical operations including four planetary flybys to get to Jupiter and 35 flybys of its icy moons. 

Follow @esaoperations, @esascience and @esa_juice for live updates of Juice’s launch, its long eight-year journey and ultimately the fascinating science it will uncover. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      NASA/Frank Michaux Technicians from NASA and primary contractor Amentum join the SLS (Space Launch System) rocket with the stacked solid rocket boosters for the Artemis II mission at NASA’s Kennedy Space Center in Florida on March 23, 2025. The core stage is the largest component of the rocket, standing 212 feet tall and weighing about 219,000 pounds with its engines. The stage is the backbone of the rocket, supporting the launch vehicle stage adapter, interim cryogenic propulsion stage, Orion stage adapter, and the Orion spacecraft.
      Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      Photo Credit: United Launch Alliance Photo Credit: United Launch Alliance Photo Credit: United Launch Alliance Photo Credit: NASA/Skip Williams NASA received the upper stage for the agency’s Artemis II SLS (Space Launch System) rocket on Mar. 4 supplied by Boeing and United Launch Alliance (ULA). Known as the interim cryogenic propulsion stage, it arrived at the Multi Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida.
      The upper stage traveled to the spaceport from ULA’s Delta Operations Center at Cape Canaveral Space Force Station.
      While at the MPPF, technicians will fuel the SLS upper stage with hydrazine for its reaction control system before transporting it to the center’s Vehicle Assembly Building for integration with SLS rocket elements atop mobile launcher 1. The rocket’s solid rocket booster segments are already assembled for launch and the core stage soon will be integrated, as will the launch vehicle stage adapter. The upper stage will be mated to the adapter.
      The four-story propulsion system is powered by an RL10 engine, which will provide Orion with the boost it needs to orbit Earth twice before venturing toward the Moon.
      Photo Credit: United Launch Alliance and NASA/Skip Williams

      View the full article
    • By NASA
      NASA/Kim Shiflett Engineers at NASA’s Kennedy Space Center in Florida completed stacking the twin SLS (Space Launch System) solid rocket boosters – seen in this Feb. 19, 2025, photo – inside the Vehicle Assembly Building for the agency’s Artemis II crewed test flight around the Moon.
      During stacking operations, which began Nov. 20, 2024, technicians used a massive overhead crane to lift each booster segment into place on mobile launcher 1, the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.
      Learn more about the process of stacking from Exploration Ground Systems.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) and AAC Clyde Space, a New Space company specialising in small satellite technologies, have jointly signed a contract for the first phase of satellite constellation project INFLECION. The initiative will transform Maritime Domain Awareness – the understanding of activities at sea – by enhancing safety, efficiency, compliance, and environmental sustainability in maritime operations.
      View the full article
  • Check out these Videos

×
×
  • Create New...