Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
      NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
      “If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
      The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
      During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
      This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.  
      As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
      For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
      Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
      Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
      Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
      “There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
      All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
      2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
      Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
      Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      On March 6, 1985, NASA’s newest space shuttle, Atlantis, made its public debut during a rollout ceremony at the Rockwell International manufacturing plant in Palmdale, California. Under construction for three years, Atlantis joined NASA’s other three space-worthy orbiters, Columbia, Challenger, and Discovery, and atmospheric test vehicle Enterprise. Officials from NASA, Rockwell, and other organizations attended the rollout ceremony. By the time NASA retired Atlantis in 2011, it had flown 33 missions in a career spanning 26 years and flying many types of missions envisioned for the space shuttle. The Visitor Center at NASA’s Kennedy Space Center in Florida has Atlantis on display. 

      Space shuttle Atlantis under construction at Rockwell International’s Palmdale, California, plant in 1984. Credit/NASA. Atlantis during the rollout ceremony in Palmdale. Credit/NASA. Workers truck Atlantis from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center. Credit/NASA. On Jan. 25, 1979, NASA announced the names of the first four space-worthy orbiters – Columbia, Challenger, Discovery, and Atlantis. Like the other vehicles, NASA named Atlantis after an historical vessel of discovery and exploration – the Woods Hole Oceanographic Institute’s two-masted research ship Atlantis that operated from 1930 to 1966. On Jan. 29, NASA signed the contract with Rockwell International of Downey, California, to build and deliver Atlantis. Construction began in March 1980 and finished in April 1984. Nearly identical to Discovery but with the addition of hardware to support the cryogenic Centaur upper stage then planned to deploy planetary spacecraft in 1986, plans shelved following the Challenger accident. After a year of testing, workers prepared Atlantis for its public debut. 

      Atlantis arrives at NASA’s Dryden, now Armstrong, Flight Research Center to prepare for its cross-country ferry flight. Credit/NASA. Atlantis during an overnight stop at Ellington Air Force Base, now Ellington Field, in Houston. Credit/NASA. Atlantis arrives at NASA’s Kennedy Space Center in Florida.Credit/NASA. Three days after the rollout ceremony, workers trucked Atlantis 36 miles overland to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base in California’s Mojave Desert, for final preparations for its cross-country ferry flight. In the Mate Demate Device, workers placed Atlantis atop the Shuttle Carrier Aircraft, a modified Boeing 747, to begin the ferry flight. The duo left Edwards on April 12, the fourth anniversary of the first space shuttle flight. Following an overnight stop at Houston’s Ellington Air Force Base, now Ellington Field, Atlantis arrived at NASA’s Kennedy Space Center in Florida on April 13. 

      Atlantis following its first rollout to Launch Pad 39A. Credit/NASA. The flight readiness firing of Atlantis’ three main engines.Credit/NASA. Liftoff of Atlantis on its first mission, STS-51J. Credit/NASA. Four months later, on Aug. 12, workers towed Atlantis from the processing facility to the assembly building and mated it to an external tank and twin solid rocket boosters. The entire stack rolled out to Launch Pad 39A on Aug. 30 in preparation for the planned Oct. 3 launch of the STS-51J mission. As with any new orbiter, on Sept. 13 NASA conducted a 20-second Flight Readiness Firing of Atlantis’ three main engines. On Sept. 16, the five-person crew participated in a countdown demonstration test, leading to an on time Oct. 3 launch. Atlantis had joined the shuttle fleet and begun its first mission to space. 

      Space shuttle Atlantis in the Visitor Center at NASA’s Kennedy Space Center in Florida. Credit/NASA. Over the course of its 33 missions spanning more than 26 years, Atlantis flew virtually every type of mission envisioned for the space shuttle, including government and commercial satellite deployments, deploying spacecraft to visit interplanetary destinations, supporting scientific missions, launching and servicing scientific observatories such as the Hubble Space Telescope, performing crew rotations and resupplying the Mir space station, and assembling and maintaining the International Space Station. Atlantis flew the final mission of the shuttle program, STS-135,  in July 2011. The following year, NASA transported Atlantis to the Kennedy Visitor Center for public display.  

      Explore More
      7 min read 40 Years Ago: Space Shuttle Discovery Makes its Public Debut
      Article 1 year ago 14 min read 40 Years Ago: STS-4, Columbia’s Final Orbital Flight Test
      Article 3 years ago 6 min read 45 Years Ago: Space Shuttle Enterprise Makes its Public Debut
      Article 3 years ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Project F.I.R.E. team, part of Falcon Research Labs and current students at Cerritos Community College in California, is researching the use of drones to extinguish fires as part of a NASA research award called the University Student Research Challenge. From left, Logan Stahl, Juan Villa, Angel Ortega, Larisa Mayoral, Jenny Escobar, and Paola Mayoral-Jimenez.Falcon Research Labs Great ideas, and the talent and passion that bring them to life, can be found anywhere.
      In that spirit, NASA’s University Student Research Challenge (USRC) in 2024 selected its first group of community college students to contribute original research to the agency’s transformative vision for 21st century aviation.
      The student-led group, from Cerritos Community College in California, is researching a new method of safely extinguishing wildfires using eco-friendly pellets dropped from uncrewed drones they call Project F.I.R.E. (Fire Intervention Retardant Expeller).
      “Wildfires are a major problem we’re facing today,” said Angel Ortega, project technical director and lead research engineer for Project F.I.R.E. at Cerritos Community College. “The goal of our research is to demonstrate that our prototype drone with biodegradable fire retardant can successfully put out a controlled fire.”
      A Community College First
      Until now, USRC has only selected participants from traditional four-year institutions, compared to a two-year community college. This award exemplifies the activity’s goal of giving all of tomorrow’s aeronautical innovators a shot at NASA support for their research ideas.
      “The University Innovation (UI) project provides a number of different avenues for students to contribute to aeronautics,” said Steven Holz, who manages the USRC award process. “All of the opportunities are different and help build knowledge and skills that would be advantageous to those wanting to continue working on UI opportunities or within NASA.”
      This award is one of two from NASA’s USRC selected in 2024. The team received the USRC award prior to the devastating Los Angeles fires of January 2025.
      “Our thoughts are with everyone affected by this tragedy,” members of the team said in a statement. “As a team, we are deeply committed to advancing innovative solutions to enhance safety and resilience, working toward a future where communities are better protected against such disasters.”
      Innovating a Solution
      The six team members of Project F.I.R.E. are driven by an ethic of public service. As fires continue to affect communities in their native southern California, they are applying their skills to finding a way to help.
      “We want to get the public inspired that there are possible solutions at hand,” Ortega said. “And the work we’re doing now can hopefully build towards that bigger goal of a widespread solution.”
      The research they are pursuing involves dropping biodegradable pellets into fires from uncrewed, autonomous drones. The pellets, upon reaching the ground, combine chemical ingredients which create a foamlike solution of fire retardant that will not contaminate the environment after the fire is extinguished.
      Project F.I.R.E.’s innovative idea for fire suppression involves releasing eco-friendly foam pellets from uncrewed drones.Falcon Research Labs The team is keen to support firefighters and wildland fire managers and keep them safe while managing these natural disasters. The group has met with firefighters, discussed the idea with them, and received useful feedback on how to make the technology work best in the field.
      Though the group is only at the outset of the research, their idea has existed for longer.
      Blue Skies Forever
      Prior to applying for a USRC, Project F.I.R.E. also presented at NASA’s 2024 Gateway to Blue Skies competition, in which they won the “Future Game-Changer” award.
      Through Gateway to Blue Skies, NASA challenges college students to research climate-friendly technologies and applications related to the future of aviation and present them at an annual forum.
      Following Project F.I.R.E.’s participation in the forum, they applied for a USRC grant to begin turning their vision into reality.
      “Our experience with NASA has been incredibly supportive and inspiring,” said Logan Stahl, the project’s operations director. “We thought competing against some of the other schools would be intimidating, but the experience we’ve had is the complete opposite. Everyone was very welcoming, and the NASA representatives communicated with us and asked questions.”
      The USRC support will allow the team to build on their earlier foundations, they said.
      “Because Gateway to Blue Skies is more conceptual, it let us bring our idea to the table. Now through USRC, we can start building hands-on and make our idea come to life,” said Larisa Mayoral, chemical engineer and laboratory operations manager.
      The Project F.I.R.E. team receives their “Future Game-Changer” award during the 2024 Gateway to Blue Skies forum held at NASA’s Ames Research Center in California.NASA / Brandon Torres The team expressed gratitude, speaking as community college students, for their ability to participate in and contribute research at a level that competes with top-brass universities.
      “We’re very appreciative of our college and NASA providing us this opportunity,” said Paola Mayoral Jimenez, laboratory coordinator and safety manager. “By doing this project, we hope to shine a light on community colleges, their students, and what they have to offer.”
      Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      3 min read NASA Selects New Round of Student-Led Aviation Research Awards
      Article 5 days ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
      Article 2 weeks ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Feb 23, 2025 EditorJim BankeContactAngela Surgenorangela.d.surgenor@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
    • By Space Force
      The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.

      View the full article
    • By NASA
      5 Min Read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun
      An artist’s concept showing Parker Solar Probe. Credits:
      NASA/APL Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
      Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally.
      This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun.
      Flying this close to the Sun is a historic moment in humanity’s first mission to a star.
      Nicky fox
      NASA Associate Administrator, Science Mission Directorate
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”
      NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved.
      Credits: NASA This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741.
      Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission.
      “Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.”
      Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit.
      The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona. NASA/APL “It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.”
      By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light.
      “The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.”
      Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere.
      Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith “We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.”
      Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring.
      So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass.
      The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been.
      Joe Westlake
      Heliophysics Division Director, NASA Headquarters
      “The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.”
      The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact: Sarah Frazier
      Share








      Details
      Last Updated Dec 27, 2024 Editor Abbey Interrante Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      1 min read NASA’s Parker Solar Probe Touches The Sun For The First Time


      Article


      3 years ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      2 months ago
      6 min read 10 Things to Know About Parker Solar Probe
      On Aug. 12, 2018, NASA launched Parker Solar Probe to the Sun, where it will…


      Article


      6 years ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...