Members Can Post Anonymously On This Site
Astronomers Watch Delayed Broadcast of a Powerful Stellar Eruption
-
Similar Topics
-
By Space Force
Front Door launches a new initiative designed to enhance critical unclassified threat information sharing with commercial space providers to bolster space system security and resilience.
View the full article
-
By Space Force
Front Door launches a new initiative designed to enhance critical unclassified threat information sharing with commercial space providers to bolster space system security and resilience.
View the full article
-
By NASA
Explore HubbleHubble Home OverviewAbout Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & BenefitsHubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts ScienceHubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky ObservatoryHubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb TeamHubble Team Career Aspirations Hubble Astronauts NewsHubble News Social Media Media Resources MultimediaMultimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More35th Anniversary Online Activities 3 Min Read Hubble Spots Stellar Sculptors in Nearby Galaxy
This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. Credits: ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble) As part of ESA/Hubble’s 35th anniversary celebrations, ESA is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
This new image showcases the dazzling young star cluster NGC 346. Although both the James Webb Space Telescope and Hubble have released images of NGC 346 previously, this image includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.
This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble) NGC 346 is in the Small Magellanic Cloud, a satellite galaxy of the Milky Way that lies 200,000 light-years away in the constellation Tucana. The Small Magellanic Cloud is less rich in elements heavier than helium — what astronomers call metals — than the Milky Way. This makes conditions in the galaxy similar to what existed in the early universe.
NGC 346 is home to more than 2,500 newborn stars. The cluster’s most massive stars, which are many times more massive than our Sun, blaze with an intense blue light in this image. The glowing pink nebula and snakelike dark clouds are sculpted by the luminous stars in the cluster.
Hubble’s exquisite sensitivity and resolution were instrumental in uncovering the secrets of NGC 346’s star formation. Using two sets of observations taken 11 years apart, researchers traced the motions of NGC 346’s stars, revealing them to be spiraling in toward the center of the cluster. This spiraling motion arises from a stream of gas from outside of the cluster that fuels star formation in the center of the turbulent cloud.
The inhabitants of this cluster are stellar sculptors, carving out a bubble within the nebula. NGC 346’s hot, massive stars produce intense radiation and fierce stellar winds that pummel the billowing gas of their birthplace, dispersing the surrounding nebula.
The nebula, named N66, is the brightest example of an H II (pronounced ‘H-two’) region in the Small Magellanic Cloud. H II regions are set aglow by ultraviolet light from hot, young stars like those in NGC 346. The presence of this nebula indicates the young age of the star cluster, as an H II region shines only as long as the stars that power it — a mere few million years for the massive stars pictured here.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble NGC 346 Images and Science
Download the image above
NASA’s Hubble Finds Spiraling Stars, Providing Window into Early Universe
Young Stars Sculpt Gas with Powerful Outflows in the Small Magellanic Cloud
Hubble’s Black and White View
Infant Stars in the Small Magellanic Cloud
Hubble Captures Unique Ultraviolet View of a Spectacular Star Cluster
Share
Details
Last Updated Apr 04, 2025 EditorAndrea GianopoulosLocationNASA Goddard Space Flight Center Contact Media
Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov
Bethany Downer
ESA/Hubble Chief Science Communications Officer
bethany.downer@esahubble.org
Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Nebulae Stars The Universe Related Links
ESA/Hubble’s 35th anniversary celebrations Release on ESA’s website Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Exploring the Birth of Stars
Hubble’s 35th Anniversary
Hubble News
View the full article
-
By European Space Agency
Image: This new image from the NASA/ESA Hubble Space Telescope showcases NGC 346, a dazzling young star cluster in the Small Magellanic Cloud. The Small Magellanic Cloud is a satellite galaxy of the Milky Way, located 210 000 light-years away in the constellation Tucana. The Small Magellanic Cloud is less rich in elements heavier than helium — what astronomers call metals — than the Milky Way. This makes conditions in the galaxy similar to what existed in the early Universe.
Although several images of NGC 346 have been released previously, this view includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.
NGC 346 is home to more than 2500 newborn stars. The cluster’s most massive stars, which are many times more massive than our Sun, blaze with an intense blue light in this image. The glowing pink nebula and snakelike dark clouds are the remnant of the birthplace of the stars in the cluster.
The inhabitants of this cluster are stellar sculptors, carving out a bubble from the nebula. NGC 346’s hot, massive stars produce intense radiation and fierce stellar winds that pummel the billowing gas of their birthplace and begin to disperse the surrounding nebula.
The nebula, named N66, is the brightest example of an H II (pronounced ‘H-two’) region in the Small Magellanic Cloud. H II regions are set aglow by ultraviolet light from hot young stars like those in NGC 346. The presence of the brilliant nebula indicates the young age of the star cluster, as an H II region shines only as long as the stars that power it — a mere few million years for the massive stars pictured here.
[Image description: A star cluster within a nebula. The background is filled with thin, pale blue clouds. Parts are thicker and pinker in colour. The cluster is made up of bright blue stars that illuminate the nebula around them. Large arcs of dense dust curve around, before and behind the clustered stars, pressed together by the stars’ radiation. Behind the clouds of the nebula can be seen large numbers of orange stars.]
View the full article
-
By European Space Agency
Video: 00:00:43 Aside from sunlight, the Sun sends out a gusty stream of particles called the solar wind. The ESA-led Solar Orbiter mission is the first to capture on camera this wind flying out from the Sun in a twisting, whirling motion. The solar wind particles spiral outwards as if caught in a cyclone that extends millions of kilometres from the Sun.
Solar wind rains down on Earth's atmosphere constantly, but the intensity of this rain depends on solar activity. More than just a space phenomenon, solar wind can disrupt our telecommunication and navigation systems.
Solar Orbiter is on a mission to uncover the origin of the solar wind. It uses six imaging instruments to watch the Sun from closer than any spacecraft before, complemented by in situ instruments to measure the solar wind that flows past the spacecraft.
This video was recorded by the spacecraft's Metis instrument between 12:18 and 20:17 CEST on 12 October 2022. Metis is a coronagraph: it blocks the direct light coming from the Sun's surface to be able to see the much fainter light scattering from charged gas in its outer atmosphere, the corona.
Metis is currently the only instrument able to see the solar wind's twisting dance. No other imaging instrument can see – with a high enough resolution in both space and time – the Sun's inner corona where this dance takes place. (Soon, however, the coronagraph of ESA's Proba-3 mission might be able to see it too!)
The research paper that features this data, ‘Metis observations of Alfvénic outflows driven by interchange reconnection in a pseudostreamer’ by Paolo Romano et al. was published today in The Astrophysical Journal.
Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA.
[Technical details: The starting image of the video shows the full view of Solar Orbiter's Metis coronagraph in red, with an image from the spacecraft's Extreme Ultraviolet Imager in the centre (yellow). Zooming to the top left of this view, we see a video derived from Metis observations. The vertical edge of the video spans 1 274 000 km, or 1.83 solar radii. The contrast in the Metis video has been enhanced by using a ‘running difference’ technique: the brightness of each pixel is given by the average pixel brightness of three subsequent frames, minus the average pixel brightness of the three preceding frames. This processing makes background stars appear as horizontal half-dark, half-light lines. Diagonal bright streaks and flashes are caused by light scattering from dust particles close to the coronagraph.]
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.