Members Can Post Anonymously On This Site
ESA’s exoplanet missions
-
Similar Topics
-
By European Space Agency
The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are fully integrated and, having completed their functional and environmental tests, they are now ready to embark on their journey to the US for launch this summer.
View the full article
-
By NASA
Official crew portrait for NASA’s SpaceX Crew-10 mission with NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov.Credit: NASA NASA and its partners will discuss the upcoming Expedition 73 mission aboard the International Space Station during a pair of news conferences on Monday, Feb. 24, from the agency’s Johnson Space Center in Houston.
Mission leadership will participate in an overview news conference at 2 p.m. EST live on NASA+, covering preparations for NASA’s SpaceX Crew-10 launch in March and the agency’s crew member rotation launch on Soyuz in April. Learn how to watch NASA content through a variety of platforms, including social media.
NASA also will host a crew news conference at 4 p.m. and provide coverage on NASA+, followed by individual crew member interviews beginning at 5 p.m. This is the final media opportunity with Crew-10 before the crew members travel to NASA’s Kennedy Space Center in Florida for launch.
The Crew-10 mission, targeted to launch Wednesday, March 12, will carry NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory.
NASA astronaut Jonny Kim, scheduled to launch to the space station on the Soyuz MS-27 spacecraft no earlier than April 8, also will participate in the crew briefing and interviews. Kim will be available again on Tuesday, March 18, for limited virtual interviews prior to launch. NASA will provide additional details on that opportunity when available.
For the Crew-10 mission, a SpaceX Falcon 9 rocket and Dragon spacecraft will launch from Launch Complex 39A at NASA Kennedy. The three-person crew of Soyuz MS-27, including Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, will launch from the Baikonur Cosmodrome in Kazakhstan.
United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Friday, Feb. 21, at 281-483-5111 or at jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson by 9:45 a.m. the day of the event.
U.S. and international media seeking remote interviews with the crew must submit requests to the NASA Johnson newsroom by 5 p.m. on Feb. 21. A copy of NASA’s media accreditation policy is available online.
Briefing participants include (all times Eastern and subject to change based on real-time operations):
2 p.m.: Expedition 73 Overview News Conference
Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington Steve Stich, manager, NASA’s Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, NASA’s International Space Station Program, NASA Johnson William Gerstenmaier, vice president, Build & Flight Reliability, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 4 p.m.: Expedition 73 Crew News Conference
Jonny Kim, Soyuz MS-27 flight engineer, NASA Anne McClain, Crew-10 spacecraft commander, NASA Nichole Ayers, Crew-10 pilot, NASA Takuya Onishi, Crew-10 mission specialist, JAXA Kirill Peskov, Crew-10 mission specialist, Roscosmos 5 p.m.: Crew Individual Interview Opportunities
Crew-10 members and Kim available for a limited number of interviews Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73.Credit: NASA Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, Kim is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing the initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.
Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59, and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram.
The Crew-10 mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, where she was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram.
With 113 days in space, this mission also will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X.
The Crew-10 mission will also be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival.
Learn more about how NASA innovates for the benefit of humanity through NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
Share
Details
Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
Humans in Space Anne C. McClain Astronauts Commercial Crew International Space Station (ISS) ISS Research Johnson Space Center Jonny Kim Nichole Ayers View the full article
-
By NASA
NASA’s SPHEREx is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California. The SPHEREx space telescope will share its ride to space on a SpaceX Falcon 9 rocket with NASA’s PUNCH mission.
Credit: USSF 30th Space Wing/Christopher
NASA will provide live coverage of prelaunch and launch activities for SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), the agency’s newest space telescope. This will lift off with another NASA mission, Polarimeter to Unify the Corona and Heliosphere, or PUNCH, which will study the Sun’s solar wind.
The launch window opens at 10:09 p.m. EST (7:09 p.m. PST) Thursday, Feb. 27, for the SpaceX Falcon 9 rocket that will lift off from Space Launch Complex 4 East at Vandenberg Space Force Base in California. Watch coverage on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
The SPHEREx mission will improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy.
The four small spacecraft that comprise PUNCH will observe the Sun’s corona as it transitions into solar wind.
The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Tuesday, Feb. 25
2 p.m. – SPHEREx and PUNCH Science Overview News Conference
Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters Joe Westlake, director, Heliophysics Division, NASA Headquarters Nicholeen Viall, PUNCH Mission Scientist, NASA’s Goddard Space Flight Center Rachel Akeson, SPHEREx science data center lead, Caltech/IPAC Phil Korngut, SPHEREx instrument scientist, Caltech The news conference will stream on NASA+. Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
Wednesday, Feb. 26
3:30 p.m. – SPHEREx and PUNCH Prelaunch News Conference
Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters David Cheney, PUNCH program executive, NASA Headquarters James Fanson, SPHEREx project manager, NASA’s Jet Propulsion Laboratory Denton Gibson, launch director, NASA’s Launch Services Program Julianna Scheiman, director, NASA Science Missions, SpaceX U.S. Air Force 1st Lt. Ina Park, 30th Operations Support Squadron launch weather officer Coverage of the prelaunch news conference will stream live on NASA+.
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
Thursday, Feb. 27
12 p.m. – SPHEREx and PUNCH Launch Preview will stream live on NASA+.
9:15 p.m. – Launch coverage begins on NASA+.
10:09 p.m. – Launch window opens.
Audio Only Coverage
Audio only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 9:15 p.m., Feb. 27, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the SPHEREx blog.
Attend the Launch Virtually
Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
You can also stay connected by following and tagging these accounts:
X: @NASA, @NASAJPL, @NASAUnivese, @NASASun, @NASAKennedy, @NASA_LSP
Facebook: NASA, NASAJPL, NASA Universe, NASASunScience, NASA’s Launch Services Program
Instagram: @NASA, @NASAKennedy, @NASAJPL, @NASAUnivese
For more information about these missions, visit:
https://science.nasa.gov/mission/spherex/
https://science.nasa.gov/mission/punch/
-end-
Alise Fisher – SPHEREx
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Sarah Frazier – PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Laura Aguiar
Kennedy Space Center, Florida
321-593-6245
laura.aquiar@nasa.gov
Share
Details
Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Missions Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
-
By NASA
5 min read
Ultra-low-noise Infrared Detectors for Exoplanet Imaging
A linear-mode avalanche photodiode array in the test dewar. The detector is the dark square in the center. Michael Bottom, University of Hawai’i One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are capable of hosting life. While thousands of planets have been discovered around other stars, the vast majority of these detections have been made via indirect methods, that is, by detecting the effect of the planet on the star’s light, rather than detecting the planet’s light directly. For example, when a planet passes in front of its host star, the brightness of the star decreases slightly.
However, indirect methods do not allow for characterization of the planet itself, including its temperature, pressure, gravity, and atmospheric composition. Planetary atmospheres may include “biosignature” gases like oxygen, water vapor, carbon dioxide, etc., which are known to be key ingredients needed to support life as we know it. As such, direct imaging of a planet and characterization of its atmosphere are key to understanding its potential habitability.
But the technical challenges involved in imaging Earth-like extrasolar planets are extreme. First such planets are detected only by observing light they reflect from their parent star, and so they typically appear fainter than the stars they orbit by factors of about 10 billion. Furthermore, at the cosmic distances involved, the planets appear right next to the stars. A popular expression is that exoplanet imaging is like trying to detect a firefly three feet from a searchlight from a distance of 300 miles.
Tremendous effort has gone into developing starlight suppression technologies to block the bright glare of the star, but detecting the light of the planet is challenging in its own right, as planets are incredibly faint. One way to quantify the faintness of planetary light is to understand the photon flux rate. A photon is an indivisible particle of light, that is, the minimum detectable amount of light. On a sunny day, approximately 10 thousand trillion photons enter your eye every second. The rate of photons entering your eye from an Earth-like exoplanet around a nearby star would be around 10 to 100 per year. Telescopes with large mirrors can help collect as much of this light as possible, but ultra-sensitive detectors are also needed, particularly for infrared light, where the biosignature gases have their strongest effects. Unfortunately, state-of-the-art infrared detectors are far too noisy to detect the low level of light emitted from exoplanets.
With support from NASA’s Astrophysics Division and industrial partners, researchers at the University of Hawai’i are developing a promising detector technology to meet these stringent sensitivity requirements. These detectors, known as avalanche photodiode arrays, are constructed out of the same semiconductor material as conventional infrared sensors. However, these new sensors employ an extra “avalanche” layer that takes the signal from a single photon and multiplies it, much like an avalanche can start with a single snowball and quickly grow it to the size of a boulder. This signal amplification occurs before any noise from the detector is introduced, so the effective noise is proportionally reduced. However, at high avalanche levels, photodiodes start to behave badly, with noise exponentially increasing, which negates any benefits of the signal amplification. Late University of Hawai’i faculty member Donald Hall, who was a key figure in driving technology for infrared astronomy, realized the potential use of avalanche photodiodes for ultra-low-noise infrared astronomy with some modifications to the material properties.
University of Hawai’i team members with cryogenic dewar used to test the sensors. From left to right, Angelu Ramos, Michael Bottom, Shane Jacobson, Charles-Antoine Claveau. Michael Bottom, University of Hawai’i The most recent sensors benefit from a new design including a graded semiconductor bandgap that allows for excellent noise performance at moderate amplification, a mesa pixel geometry to reduce electronic crosstalk, and a read-out integrated circuit to allow for short readout times. “It was actually challenging figuring out just how sensitive these detectors are,” said Michael Bottom, associate professor at the University of Hawai’i and lead of development effort. “Our ‘light-tight’ test chamber, which was designed to evaluate the infrared sensors on the James Webb Space Telescope, was supposed to be completely dark. But when we put these avalanche photodiodes in the chamber, we started seeing light leaks at the level of a photon an hour, which you would never be able to detect using the previous generation of sensors.”
The new designs have a format of one megapixel, more than ten times larger than the previous iteration of sensors, and circuitry that allows for tracking and subtracting any electronic drifts. Additionally, the pixel size and control electronics are such that these new sensors could be drop-in replacements for the most common infrared sensors used on the ground, which would give new capabilities to existing instruments.
Image of the Palomar-2 globular cluster located in the constellation of Auriga, taken with the linear-mode avalanche photodiode arrays, taken from the first on-sky testing of the sensors using the University of Hawai’i’s 2.2 meter telescope. Michael Bottom, University of Hawai’i Last year, the team took the first on-sky images from the detectors, using the University of Hawai’i’s 2.2-meter telescope. “It was impressive to see the avalanche process on sky. When we turned up the gain, we could see more stars appear,” said Guillaume Huber, a graduate student working on the project. “The on-sky demonstration was important to prove the detectors could perform well in an operational environment,” added Michael Bottom.
According to the research team, while the current sensors are a major step forward, the megapixel format is still too small for many science applications, particularly those involving spectroscopy. Further tasks include improving detector uniformity and decreasing persistence. The next generation of sensors will be four times larger, meeting the size requirements for the Habitable Worlds Observatory, NASA’s next envisioned flagship mission, with the goals of imaging and characterizing Earth-like exoplanets.
Project Lead: Dr. Michael Bottom, University of Hawai’i
Sponsoring Organization: NASA Strategic Astrophysics Technology (SAT) Program
Share
Details
Last Updated Feb 18, 2025 Related Terms
Technology Highlights Astrophysics Astrophysics Division Science-enabling Technology Explore More
6 min read Webb Reveals Rapid-Fire Light Show From Milky Way’s Central Black Hole
Article
5 mins ago
2 min read Hubble Captures a Cosmic Cloudscape
Article
4 days ago
5 min read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
Article
5 days ago
View the full article
-
By NASA
Artistic rendering of Intuitive Machines’ Nova-C lander on the surface of the Moon.Credit: Intuitive Machines NASA’s Polar Resources Ice Mining Experiment-1 (PRIME-1) is preparing to explore the Moon’s subsurface and analyze where lunar resources may reside. The experiment’s two key instruments will demonstrate our ability to extract and analyze lunar soil to better understand the lunar environment and subsurface resources, paving the way for sustainable human exploration under the agency’s Artemis campaign for the benefit of all.
Its two instruments will work in tandem: The Regolith and Ice Drill for Exploring New Terrains (TRIDENT) will drill into the Moon’s surface to collect samples, while the Mass Spectrometer Observing Lunar Operations (MSOLO) will analyze these samples to determine the gas composition released across the sampling depth. The PRIME-1 technology will provide valuable data to help us better understand the Moon’s surface and how to work with and on it.
“The ability to drill and analyze samples at the same time allows us to gather insights that will shape the future of lunar resource utilization,” said Jackie Quinn, PRIME-1 project manager at NASA’s Kennedy Space Center in Florida. “Human exploration of the Moon and deep space will depend on making good use of local resources to produce life-sustaining supplies necessary to live and work on another planetary body.”
The PRIME-1 experiment is one of the NASA payloads aboard the next lunar delivery through NASA’s CLPS (Commercial Lunar Payload Services) initiative, set to launch from the agency’s Kennedy Space Center no earlier than Wednesday, Feb. 26, on Intuitive Machines’ Athena lunar lander and explore the lunar soil in Mons Mouton, a lunar plateau near the Moon’s South Pole.
Developed by Honeybee Robotics, a Blue Origin Company, TRIDENT is a rotary percussive drill designed to excavate lunar regolith and subsurface material up to 3.3 feet (1 meter) deep. The drill will extract samples, each about 4 inches (10 cm) in length, allowing scientists to analyze how trapped and frozen gases are distributed at different depths below the surface.
The TRIDENT drill is equipped with carbide cutting teeth to penetrate even the toughest lunar materials. Unlike previous lunar drills used by astronauts during the Apollo missions, TRIDENT will be controlled from Earth. The drill may provide key information about subsurface soil temperatures as well as gain key insight into the mechanical properties of the lunar South Pole soil. Learning more about regolith temperatures and properties will greatly improve our understanding of the environments where lunar resources may be stable, revealing what resources may be available for future Moon missions.
A commercial off-the-shelf mass spectrometer, MSOLO, developed by INFICON and made suitable for spaceflight at Kennedy, will analyze any gas released from the TRIDENT drilled samples, looking for the potential presence of water ice and other gases trapped beneath the surface. These measurements will help scientists understand the Moon’s potential for resource utilization.
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is one of many customers on future flights. PRIME-1 was funded by NASA’s Space Technology Mission Directorate Game Changing Development program.
Learn more about CLPS and Artemis at:
https://www.nasa.gov/clps
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.