Members Can Post Anonymously On This Site
ExoMars rover testing moves ahead and deep down
-
Similar Topics
-
By NASA
Jorge Chong is helping shape the future of human spaceflight, one calculation at a time. As a project manager for TRON (Tracking and Ranging via Optical Navigation) and a guidance, navigation, and control (GNC) test engineer in the Aeroscience and Flight Mechanics Division, he is leading efforts to ensure the Orion spacecraft can navigate deep space autonomously.
Jorge Chong in front of the Mission Control Center at NASA’s Johnson Space Center in Houston when he helped with optical navigation operations during Artemis I.Image courtesy of Jorge Chong “GNC is like the brain of a spacecraft. It involves a suite of sensors that keep track of where the vehicle is in orbit so it can return home safely,” he said. “Getting to test the components of a GNC system makes you very familiar with how it all works together, and then to see it fly and help it operate successfully is immensely rewarding.”
His work is critical to the Artemis campaign, which aims to return humans to the Moon and pave the way for Mars. From developing optical navigation technology that allows Orion to determine its position using images of Earth and the Moon to testing docking cameras and Light Detection and Ranging systems that enable autonomous spacecraft rendezvous, Chong is pushing the limits of exploration. He also runs high-fidelity flight simulations at Lockheed Martin’s Orion Test Hardware facility in Houston, ensuring Orion’s software is ready for the demands of spaceflight.
Chong’s NASA career spans seven years as a full-time engineer, plus three years as a co-op student at NASA’s Johnson Space Center in Houston. In 2024, he began leading Project TRON, an optical navigation initiative funded by a $2 million Early Career Initiative award. The project aims to advance autonomous space navigation—an essential capability for missions beyond Earth’s orbit.
Jorge Chong and his colleagues with the Artemis II docking camera in the Electro-Optics Lab at Johnson. From left to right: Paul McKee, Jorge Chong, and Kevin Kobylka. Bottom right: Steve Lockhart and Ronney Lovelace. Thanks to Chong’s work, the Artemis Generation is one step closer to exploring the Moon, Mars, and beyond. He supported optical navigation operations during Artemis I, is writing software that will fly on Artemis II, and leads optical testing for Orion’s docking cameras. But his path to NASA wasn’t always written in the stars.
“I found math difficult as a kid,” Chong admits. “I didn’t enjoy it at first, but my parents encouraged me patiently, and eventually it started to click and then became a strength and something I enjoyed. Now, it’s a core part of my career.” He emphasizes that perseverance is key, especially for students who may feel discouraged by challenging subjects.
Most of what Chong has learned, he says, came from working collaboratively on the job. “No matter how difficult something may seem, anything can be learned,” he said. “I could not have envisioned being involved in projects like these or working alongside such great teams before coming to Johnson.”
Jorge Chong (left) and his siblings Ashley and Bronsen at a Texas A&M University game. Image courtesy of Jorge Chong His career has also reinforced the importance of teamwork, especially when working with contractors, vendors, universities, and other NASA centers. “Coordinating across these dynamic teams and keeping the deliverables on track can be challenging, but it has helped to be able to lean on teammates for assistance and keep communication flowing,” said Chong.
And soon, those systems will help Artemis astronauts explore places no human has gone before. Whether guiding Orion to the Moon or beyond, Chong’s work is helping NASA write the next chapter of space exploration.
“I thank God for the doors He has opened for me and the incredible mentors and coworkers who have helped me along the way,” he said.
View the full article
-
By Space Force
The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.
View the full article
-
By European Space Agency
The European Space Agency (ESA) has jointly signed a contract with Thales Alenia Space to develop Element #2 of its High-throughput Digital and Optical Network (HydRON), an advanced laser-based satellite system that will transform the way we communicate in space. This phase will establish a satellite collector in low Earth orbit (LEO), capable of connecting different orbital layers using cutting-edge optical technology.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Technicians at Thales Alenia Space in Turin, Italy, lower Gateway’s HALO (Habitation and Logistics Outpost) onto a stand in the cleanroom.Thales Alenia Space When NASA’s Artemis IV astronauts journey to the Moon, they will make the inaugural visit to Gateway, humanity’s first space station in lunar orbit. Shown here, technicians carefully guide HALO (Habitation and Logistics Outpost)—a foundational element of Gateway—onto a stand in the cleanroom at Thales Alenia Space in Turin, Italy. The element’s intricate structure, designed to support astronauts and science in lunar orbit, has entered the cleanroom after successfully completing a series of rigorous environmental stress tests.
In the cleanroom, technicians will make final installations before preparing the module for transport to the United States, a key milestone on its path to launch. This process includes installing and testing valves and hatches, performing leak checks, and integrating external secondary structures. Once these steps are finished, the module will be packaged for shipment to Gilbert, Arizona, where Northrop Grumman will complete its outfitting.
Technicians at Thales Alenia Space in Turin, Italy, oversee the HALO module’s transfer to the cleanroom.Thales Alenia Space As one of Gateway’s four pressurized modules, HALO will provide Artemis astronauts with space to live, work, conduct scientific research, and prepare for missions to the lunar surface. The module will also support internal and external science payloads, including a space weather instrument suite attached via a Canadian Space Agency Small Orbital Replacement Unit Robotic Interface, host the Lunar Link communications system developed by European Space Agency, and offer docking ports for visiting vehicles, including lunar landers and NASA’s Orion spacecraft.
Developed in collaboration with industry and international partners, Gateway is a cornerstone of NASA’s Artemis campaign to advance science and exploration on and around the Moon in preparation for the next giant leap: the first human missions to Mars.
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
Details
Last Updated Feb 13, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Humans in Space Johnson Space Center Explore More
2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
Article 3 weeks ago 2 min read Gateway Tops Off
Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
Article 3 months ago 2 min read Gateway: Life in a Lunar Module
Article 4 months ago Keep Exploring Discover More Topics From NASA
Humans In Space
Orion Spacecraft
Human Landing System
Extravehicular Activity and Human Surface Mobility
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A team at JPL packed up three small Moon rovers, delivering them in February to the facility where they’ll be attached to a commercial lunar lander in preparation for launch. The rovers are part of a project called CADRE that could pave the way for potential future multirobot missions.. NASA/JPL-Caltech A trio of suitcase-size rovers and their base station have been carefully wrapped up and shipped off to join the lander that will deliver them to the Moon’s surface.
Three small NASA rovers that will explore the lunar surface as a team have been packed up and shipped from the agency’s Jet Propulsion Laboratory in Southern California, marking completion of the first leg of the robots’ journey to the Moon.
The rovers are part of a technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration), which aims to show that a group of robots can collaborate to gather data without receiving direct commands from mission controllers on Earth. They’ll use their cameras and ground-penetrating radars to send back imagery of the lunar surface and subsurface while testing out the novel software that enables them to work together autonomously.
The CADRE rovers will launch to the Moon aboard IM-3, Intuitive Machines’ third lunar delivery, which has a mission window that extends into early 2026, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Once installed on Intuitive Machines’ Nova-C lander, they’ll head to the Reiner Gamma region on the western edge of the Moon’s near side, where the solar-powered, suitcase-size rovers will spend the daylight hours of a lunar day (the equivalent of about 14 days on Earth) carrying out experiments. The success of CADRE could pave the way for potential future missions with teams of autonomous robots supporting astronauts and spreading out to take simultaneous, distributed scientific measurements.
Members of a JPL team working on NASA’s CADRE technology demonstration use temporary red handles to move one of the project’s small Moon rovers to prepare it for transport to Intuitive Machines’ Houston facility, where it will be attached to the company’s third lunar lander. Construction of the CADRE hardware — along with a battery of rigorous tests to prove readiness for the journey through space — was completed in February 2024.
To get prepared for shipment to Intuitive Machines’ Houston facility, each rover was attached to its deployer system, which will lower it via tether from the lander onto the dusty lunar surface. Engineers flipped each rover-deployer pair over and attached it to an aluminum plate for safe transit. The rovers were then sealed in protective metal-frame enclosures that were fitted snuggly into metal shipping containers and loaded onto a truck. The hardware arrived safely on Sunday, Feb. 9.
“Our small team worked incredibly hard constructing these robots and putting them to the test, and we have been eagerly waiting for the moment where we finally see them on their way,” said Coleman Richdale, the team’s assembly, test, and launch operations lead at JPL. “We are all genuinely thrilled to be taking this next step in our journey to the Moon, and we can’t wait to see the lunar surface through CADRE’s eyes.”
The rovers, the base station, and a camera system that will monitor CADRE experiments on the Moon will be integrated with the lander — as will several other NASA payloads — in preparation for the launch of the IM-3 mission.
More About CADRE
A division of Caltech in Pasadena, California, JPL manages CADRE for the Game Changing Development program within NASA’s Space Technology Mission Directorate. The technology demonstration was selected under the agency’s Lunar Surface Innovation Initiative, which was established to expedite the development of technologies for sustained presence on the lunar surface. NASA’s Science Mission Directorate manages the CLPS initiative. The agency’s Glenn Research Center in Cleveland and its Ames Research Center in Silicon Valley, California, both supported the project. Motiv Space Systems designed and built key hardware elements at the company’s Pasadena facility. Clemson University in South Carolina contributed research in support of the project.
For more about CADRE, go to:
https://go.nasa.gov/cadre
News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2025-018
Share
Details
Last Updated Feb 11, 2025 Related Terms
CADRE (Cooperative Autonomous Distributed Robotic Exploration) Commercial Lunar Payload Services (CLPS) Earth's Moon Game Changing Development Program Jet Propulsion Laboratory Space Technology Mission Directorate Technology Technology Demonstration Explore More
5 min read NASA’s Curiosity Rover Captures Colorful Clouds Drifting Over Mars
Article 2 hours ago 5 min read NASA-Led Study Pinpoints Areas Sinking, Rising Along California Coast
Article 1 day ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.