Jump to content

Recommended Posts

Posted
A truck driver passing through Arizona says his dash cam appears to have caught what looks like a ghost.

ghost%20spirit%20dash%20cam%20truck%20arizona.jpg

William Church said he was driving on SR 87 around 2:30 a.m. on March 11 when he passed by a transparent figure standing on the side of the road. Church says he was between Phoenix and Payson with no cars in sight. 

He described the figure, which seems to be half materialized, as "just standing in the roadway as I passed by looks like you can see the lines through the legs making the figure." 

Some people say that the ghostly human-like figure is a car light reflection or glare but since SR 87 has seen its fair share of deadly car crashes as it's one of the state's main highways to get to and from mountain communities it is suggested that it could be the spirit of someone who died in an accident on this road.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The six SCALPSS cameras mounted around the base of Blue Ghost will collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images to produce a 3D view of the surface. Image courtesy of Firefly. Say cheese again, Moon. We’re coming in for another close-up.
      For the second time in less than a year, a NASA technology designed to collect data on the interaction between a Moon lander’s rocket plume and the lunar surface is set to make the long journey to Earth’s nearest celestial neighbor for the benefit of humanity.
      Developed at NASA’s Langley Research Center in Hampton, Virginia, Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) is an array of cameras placed around the base of a lunar lander to collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images from the version of SCALPSS on Firefly’s Blue Ghost — SCALPSS 1.1 — to produce a 3D view of the surface. An earlier version, SCALPSS 1.0, was on Intuitive Machines’ Odysseus spacecraft that landed on the Moon last February. Due to mission contingencies that arose during the landing, SCALPSS 1.0 was unable to collect imagery of the plume-surface interaction. The team was, however, able to operate the payload in transit and on the lunar surface following landing, which gives them confidence in the hardware for 1.1.
      The SCALPSS 1.1 payload has two additional cameras — six total, compared to the four on SCALPSS 1.0 — and will begin taking images at a higher altitude, prior to the expected onset of plume-surface interaction, to provide a more accurate before-and-after comparison.
      These images of the Moon’s surface won’t just be a technological novelty. As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to be able to accurately predict the effects of landings.
      How much will the surface change? As a lander comes down, what happens to the lunar soil, or regolith, it ejects? With limited data collected during descent and landing to date, SCALPSS will be the first dedicated instrument to measure the effects of plume-surface interaction on the Moon in real time and help to answer these questions.
      “If we’re placing things – landers, habitats, etc. – near each other, we could be sand blasting what’s next to us, so that’s going to drive requirements on protecting those other assets on the surface, which could add mass, and that mass ripples through the architecture,” said Michelle Munk, principal investigator for SCALPSS and acting chief architect for NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “It’s all part of an integrated engineering problem.”
      Under the Artemis campaign, the agency’s current lunar exploration approach, NASA is collaborating with commercial and international partners to establish the first long-term presence on the Moon. On this CLPS (Commercial Lunar Payload Services) initiative delivery carrying over 200 pounds of NASA science experiments and technology demonstrations, SCALPSS 1.1 will begin capturing imagery from before the time the lander’s plume begins interacting with the surface until after the landing is complete.
      The final images will be gathered on a small onboard data storage unit before being sent to the lander for downlink back to Earth. The team will likely need at least a couple of months to
      process the images, verify the data, and generate the 3D digital elevation maps of the surface. The expected lander-induced erosion they reveal probably won’t be very deep — not this time, anyway.
      One of the SCALPSS cameras is visible here mounted to the Blue Ghost lander.Image courtesy of Firefly. “Even if you look at the old Apollo images — and the Apollo crewed landers were larger than these new robotic landers — you have to look really closely to see where the erosion took place,” said Rob Maddock, SCALPSS project manager at Langley. “We’re anticipating something on the order of centimeters deep — maybe an inch. It really depends on the landing site and how deep the regolith is and where the bedrock is.”
      But this is a chance for researchers to see how well SCALPSS will work as the U.S. advances human landing systems as part of NASA’s plans to explore more of the lunar surface.
      “Those are going to be much larger than even Apollo. Those are large engines, and they could conceivably dig some good-sized holes,” said Maddock. “So that’s what we’re doing. We’re collecting data we can use to validate the models that are predicting what will happen.”
      The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development Program.
      NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.

      Share
      Details
      Last Updated Dec 19, 2024 EditorAngelique HerringLocationNASA Langley Research Center Related Terms
      General Explore More
      4 min read Statistical Analysis Using Random Forest Algorithm Provides Key Insights into Parachute Energy Modulator System
      Article 6 hours ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 8 hours ago 2 min read An Evening With the Stars: 10 Years and Counting 
      Article 8 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Through the Artemis campaign, NASA will land the next American astronauts and first international astronaut on the South Pole region of the Moon. On Thursday, NASA announced the latest updates to its lunar exploration plans.
      Experts discussed results of NASA’s investigation into its Orion spacecraft heat shield after it experienced an unexpected loss of charred material during re-entry of the Artemis I uncrewed test flight. For the Artemis II crewed test flight, engineers will continue to prepare Orion with the heat shield already attached to the capsule. The agency also announced it is now targeting April 2026 for Artemis II and mid-2027 for Artemis III. The updated mission timelines also reflect time to address the Orion environmental control and life support systems.
      “The Artemis campaign is the most daring, technically challenging, collaborative, international endeavor humanity has ever set out to do,” said NASA Administrator Bill Nelson. “We have made significant progress on the Artemis campaign over the past four years, and I’m proud of the work our teams have done to prepare us for this next step forward in exploration as we look to learn more about Orion’s life support systems to sustain crew operations during Artemis II. We need to get this next test flight right. That’s how the Artemis campaign succeeds.”
      The agency’s decision comes after an extensive investigation of an Artemis I heat shield issue showed the Artemis II heat shield can keep the crew safe during the planned mission with changes to Orion’s trajectory as it enters Earth’s atmosphere and slows from nearly 25,000 mph to about 325 mph before its parachutes unfurl for safe splashdown in the Pacific Ocean.
      “Throughout our process to investigate the heat shield phenomenon and determine a forward path, we’ve stayed true to NASA’s core values; safety and data-driven analysis remained at the forefront,” said Catherine Koerner, associate administrator, Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “The updates to our mission plans are a positive step toward ensuring we can safely accomplish our objectives at the Moon and develop the technologies and capabilities needed for crewed Mars missions.”
      NASA will continue stacking its SLS (Space Launch System) rocket elements, which began in November, and prepare it for integration with Orion for Artemis II.
      Throughout the fall months, NASA, along with an independent review team, established the technical cause of an issue seen after the uncrewed Artemis I test flight in which charred material on the heat shield wore away differently than expected. Extensive analysis, including from more than 100 tests at unique facilities across the country, determined the heat shield on Artemis I did not allow for enough of the gases generated inside a material called Avcoat to escape, which caused some of the material to crack and break off. Avcoat is designed to wear away as it heats up and is a key material in the thermal protection system that guards Orion and its crew from the nearly 5,000 degrees Fahrenheit of temperatures that are generated when Orion returns from the Moon through Earth’s atmosphere. Although a crew was not inside Orion during Artemis I, data shows the temperature inside Orion remained comfortable and safe had crew been aboard.
      Engineers already are assembling and integrating the Orion spacecraft for Artemis III based on lessons learned from Artemis I and implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured to achieve uniformity and consistent permeability. The skip entry is needed for return from speeds expected for lunar landing missions.
      “Victor, Christina, Jeremy, and I have been following every aspect of this decision and we are thankful for the openness of NASA to weigh all options and make decisions in the best interest of human spaceflight. We are excited to fly Artemis II and continue paving the way for sustained human exploration of the Moon and Mars,” said Reid Wiseman, NASA astronaut and Artemis II commander. “We were at the agency’s Kennedy Space Center in Florida recently and put eyes on our SLS rocket boosters, the core stage, and the Orion spacecraft. It is inspiring to see the scale of this effort, to meet the people working on this machine, and we can’t wait to fly it to the Moon.”
      Wiseman, along with NASA astronauts Victor Glover and Christina Koch and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will fly aboard the 10-day Artemis II test flight around the Moon and back. The flight will provide valuable data about Orion systems needed to support crew on their journey to deep space and bring them safely home, including air revitalization in the cabin, manual flying capabilities, and how humans interact with other hardware and software in the spacecraft.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work farther away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      -end-
      Meira Bernstein / Rachel Kraft
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov
      Share
      Details
      Last Updated Dec 05, 2024 LocationNASA Headquarters Related Terms
      Missions Artemis Artemis 2 Exploration Systems Development Mission Directorate NASA Directorates View the full article
    • By USH
      A security camera recently captured an eerie scene that has left people intrigued and spooked. In the footage, recorded at dawn, a mysterious figure dressed in white appears near a large vehicle. What makes the video even stranger is the reaction of two nearby dogs, who seem unusually distressed and unsettled by the presence. 

      While the exact location in Mexico where this happened hasn’t been confirmed, many are already speculating about the figure’s identity. Some believe it could be La Llorona, the legendary weeping woman from Mexican folklore. La Llorona is said to wander in sorrow, mourning her lost children, and has been the focus of countless ghost stories over the years. 
      Others have suggested a different explanation, claiming the figure resembles a "nightcrawler," a strange cryptid reportedly known for its bizarre appearance. 
      Skeptics, however, argue that it might just be a person caught in an unusual moment, and the dogs’ reactions could be explained by their heightened senses picking up on something out of the ordinary. Still, the dogs' unsettling behavior has sparked debate about whether the encounter might have been something paranormal. 
      For now, the true nature of the figure remains a mystery. View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Research scientist Alfonso Delgado Bonal makes important discoveries about patterns in cloud movements while thriving within the NASA Goddard family.
      Name: Alfonso Delgado Bonal
      Formal Job Classification: Research scientist
      Organization: Climate and Radiation Laboratory, Science Directorate (Code 613)
      Alfonso Delgado Bonal is a research scientist for NASA’s Goddard Space Flight Center’s Climate and Radiation Laboratory in Greenbelt, Md.NASA What do you do and what is most interesting about your role here at Goddard?
      As a theoretical physicist, I study data from the DSCOVR satellite to analyze daytime variability of cloud properties. We are discovering diurnal (daylight) cloud patterns using a single sensor.
      What is your educational background?
      I have an undergraduate degree in theoretical physics from the University of Salamanca, Spain. I have a master’s in astrophysics from the University of Valencia, Spain, and a second master’s in space technology from the University of Alcalá, Spain. In 2015, I received a doctorate in theoretical physics from the University of Salamanca.
      From 2016–2018, I had a postdoctoral fellowship with the Spanish National Research Agency. From 2018–2020, I had a postdoctoral fellowship at Goddard’s Climate and Radiation Laboratory.
      I also have an undergraduate degree in economics from the Spanish Open University and an undergraduate degree in law from the University of La Rioja, Spain. I am considering returning to school for a master’s in law to sit for the bar.
      What fascinates you about clouds?
      As a child, I remember watching clouds moving. I never questioned whether these clouds moved randomly or in a pattern. One day, Sasha Marshak, my supervisor and one of my mentors, asked me to determine if clouds move randomly or in a pattern.
      Clouds have a profound impact on our planet. They regulate the Earth’s energy budget. Some clouds reflect radiation that cools our planet while other clouds trap radiation which warms our planet. Cloud behavior is one of the most important factors in regulating climate change.
      What is the data from the DSCOVR satellite telling you?
      DSCOVR is the only satellite capturing data that shows the entire sunlit part of the Earth at once. The left part of an image is early morning and the right part of an image is nearing sunset. For the first time, we can see how clouds evolve throughout the entire day. Other satellites only capture either a fixed time or a small region of the planet.
      We discovered that clouds do not move randomly, they move in patterns. We measure these patterns in terms of cloud fraction (the amount of sky covered by clouds), cloud height and cloud optical thickness. In general, at noon we have the maximum cloud coverage over land and the minimum cloud coverage over sea. Also, at noon, clouds are generally lower and thicker. There is some predictability in the general pattern of cloud movement.
      Coming from Spain, what was the most unusual cultural aspect you had to adjust to when you joined your lab?
      When I arrived from Spain, my English was not great and I did not understand the cultural aspects. My first email was from Headquarters thanking the whole NASA family. The idea of a work family was something unfamiliar. To me, family meant blood relatives.
      After one or two years, I felt that members of my lab were indeed my family. They really care about me as a person and I feel the same about them. We have parties where we do not talk about work, we talk about ourselves and our families. Our lab has people from all over the world, and we all share the same feeling about being part of the NASA family. We have a family at home and also a family at NASA.
      Every time I see Sasha, he always asks about my family and about myself before talking about the work. Lazaros Oreopoulos, Sasha’s supervisor, does the same. They really inspire me.
      As your mentors, how did Sasha and Lazaros made you feel welcome?
      I came here from a different world. I was doing theoretical physics in Spain but my NASA post doc involved data analysis, which is what I am doing now. Sasha also came from a different county and also had a strong mathematical background. I felt that he understood me and the challenges before me. He made me feel extremely welcome and explained some cultural aspects. He made sure that I understood how the lab worked, introduced me to everyone, and invited my wife and me to dinner at his home. He really made me feel part of the NASA family.
      Lazaros strikes the perfect balance between being a respected supervisor and acting like family. He always has a winter party for the entire office where everyone brings in homemade food from their country. Our lab has people from many different countries. Lazaros always checks in with me to see how I am doing. He has created a marvelous place where we all feel like family and do great work.
      Lazaros and Sasha gave me a chance when they invited me to join their lab. I do not have words to thank them enough for believing in me when I was just a post doc and for guiding me through my career and, most of all, for their incredible advice about life. They are now both family to me.
      What advice have your mentors given you?
      Both Sasha and Lazaros taught me creativity. They both always ask questions. Even if a question seems at first impossible to answer, eventually you will develop the tools to answer the questions. It was Sasha who asked me if clouds have random behavior or move in patterns. It has taken me a few years to answer his question and now we are making unexpected and important discoveries about clouds.
      What do you do for fun?
      Now that I have two young children, my fun now is spending as much time as I can with my wife and children. My wife is a biologist and I have learned a lot from her.
      What book are you currently reading?
      I love reading. I am rereading the “Iliad,” one of my favorites. My favorite book is “The Little Prince.” I read my children a bedtime story every night and now that they are a little older, sometimes they read one to me.
      What is your one big dream?
      To see my kids have great lives and be happy.
      What is your motto?
      “If you’re going to try, go all the way.” —Charles Bukowski
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Nov 26, 2024 EditorJamie AdkinsContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Deep Space Climate Observatory (DSCOVR) Goddard Space Flight Center People of NASA Explore More
      5 min read NASA Data Reveals Role of Green Spaces in Cooling Cities
      As any urban dweller who has lived through a heat wave knows, a shady tree…
      Article 58 mins ago 3 min read Emerging Engineering Leader Basil Baldauff Emphasizes Osage Values
      Article 7 hours ago 4 min read NASA, JAXA XRISM Mission Looks Deeply Into ‘Hidden’ Stellar System
      The Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) observatory has captured the most detailed portrait…
      Article 1 day ago View the full article
    • By NASA
      Caption: Firefly Aerospace’s Blue Ghost Mission One lander, seen here, will carry 10 NASA science and technology instruments to the Moon’s near side when it launches from NASA’s Kennedy Space Center in Florida on a SpaceX Falcon 9 rocket, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. Credit: Firefly Aerospace Media accreditation is open for the next delivery to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign for the benefit of humanity. A six-day launch window opens no earlier than mid-January 2025 for the first Firefly Aerospace launch to the lunar surface.

      The Blue Ghost flight, carrying 10 NASA science and technology instruments, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. Media prelaunch and launch activities will take place at NASA Kennedy.

      Attendance for this launch is open to U.S. citizens and international media. International media must apply by Monday, Dec. 9, and U.S. media must apply by Thursday, Jan. 2. Media interested in participating in launch activities must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support such as space for satellite trucks, tents, or electrical connections, please send an email by Thursday, Jan. 2, to: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      The company named the mission Ghost Riders in the Sky. It will land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the lunar near side. The mission will carry NASA investigations and first-of-their-kind technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. This includes payloads testing lunar subsurface drilling, regolith sample collection, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured also benefits humanity by providing insights into how space weather and other cosmic forces impact Earth.

      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights.

      As part of its Artemis campaign, NASA is working with multiple U.S. companies to deliver science and technology to the lunar surface. These companies are eligible to bid on task orders to deliver NASA payloads to the Moon. The task order includes payload integration and operations and launching from Earth and landing on the surface of the Moon. Existing CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.

      For more information about the agency’s Commercial Lunar Payload Services initiative, see:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov   

      Wynn Scott / Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      wynn.b.scott@nasa.gov / nataila.s.riusech@nasa.gov

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Nov 25, 2024 LocationNASA Headquarters Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
  • Check out these Videos

×
×
  • Create New...