Members Can Post Anonymously On This Site
ExoMars: Back on track for the Red Planet
-
Similar Topics
-
By European Space Agency
Registrations are now open for the European Space Agency’s Living Planet Symposium (LPS) – one of the largest Earth observation conferences in the world. The event will take place on 23–27 June 2025 in Vienna, Austria.
View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. Full illustration below. Credits:
NASA, ESA, CSA, R. Crawford (STScI) Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative surrounding what is believed to be the first star observed in the act of swallowing a planet. The new findings suggest that the star actually did not swell to envelop a planet as previously hypothesized. Instead, Webb’s observations show the planet’s orbit shrank over time, slowly bringing the planet closer to its demise until it was engulfed in full.
“Because this is such a novel event, we didn’t quite know what to expect when we decided to point this telescope in its direction,” said Ryan Lau, lead author of the new paper and astronomer at NSF NOIRLab (National Science Foundation National Optical-Infrared Astronomy Research Laboratory) in Tuscon, Arizona. “With its high-resolution look in the infrared, we are learning valuable insights about the final fates of planetary systems, possibly including our own.”
Two instruments aboard Webb conducted the post-mortem of the scene – Webb’s MIRI (Mid-Infrared Instrument) and NIRSpec (Near-Infrared Spectrograph). The researchers were able to come to their conclusion using a two-pronged investigative approach.
Image A: Planetary Engulfment Illustration
NASA’s James Webb Space Telescope’s observations of what is thought to be the first-ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly depreciated over time, as seen in this artist’s concept. NASA, ESA, CSA, R. Crawford (STScI) Constraining the How
The star at the center of this scene is located in the Milky Way galaxy about 12,000 light-years away from Earth.
The brightening event, formally called ZTF SLRN-2020, was originally spotted as a flash of optical light using the Zwicky Transient Facility at the Palomar Observatory in San Diego, California. Data from NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) showed the star actually brightened in the infrared a year before the optical light flash, hinting at the presence of dust. This initial 2023 investigation led researchers to believe that the star was more Sun-like, and had been in the process of aging into a red giant over hundreds of thousands of years, slowly expanding as it exhausted its hydrogen fuel.
However, Webb’s MIRI told a different story. With powerful sensitivity and spatial resolution, Webb was able to precisely measure the hidden emission from the star and its immediate surroundings, which lie in a very crowded region of space. The researchers found the star was not as bright as it should have been if it had evolved into a red giant, indicating there was no swelling to engulf the planet as once thought.
Reconstructing the Scene
Researchers suggest that, at one point, the planet was about Jupiter-sized, but orbited quite close to the star, even closer than Mercury’s orbit around our Sun. Over millions of years, the planet orbited closer and closer to the star, leading to the catastrophic consequence.
“The planet eventually started to graze the star’s atmosphere. Then it was a runaway process of falling in faster from that moment,” said team member Morgan MacLeod of the Harvard-Smithsonian Center for Astrophysics and the Massachusetts Institute of Technology in Cambridge, Massachusetts. “The planet, as it’s falling in, started to sort of smear around the star.”
In its final splashdown, the planet would have blasted gas away from the outer layers of the star. As it expanded and cooled off, the heavy elements in this gas condensed into cold dust over the next year.
Inspecting the Leftovers
While the researchers did expect an expanding cloud of cooler dust around the star, a look with the powerful NIRSpec revealed a hot circumstellar disk of molecular gas closer in. Furthermore, Webb’s high spectral resolution was able to detect certain molecules in this accretion disk, including carbon monoxide.
“With such a transformative telescope like Webb, it was hard for me to have any expectations of what we’d find in the immediate surroundings of the star,” said Colette Salyk of Vassar College in Poughkeepsie, New York, an exoplanet researcher and co-author on the new paper. “I will say, I could not have expected seeing what has the characteristics of a planet-forming region, even though planets are not forming here, in the aftermath of an engulfment.”
The ability to characterize this gas opens more questions for researchers about what actually happened once the planet was fully swallowed by the star.
“This is truly the precipice of studying these events. This is the only one we’ve observed in action, and this is the best detection of the aftermath after things have settled back down,” Lau said. “We hope this is just the start of our sample.”
These observations, taken under Guaranteed Time Observation program 1240, which was specifically designed to investigate a family of mysterious, sudden, infrared brightening events, were among the first Target of Opportunity programs performed by Webb. These types of study are reserved for events, like supernova explosions, that are expected to occur, but researchers don’t exactly know when or where. NASA’s space telescopes are part of a growing, international network that stands ready to witness these fleeting changes, to help us understand how the universe works.
Researchers expect to add to their sample and identify future events like this using the upcoming Vera C. Rubin Observatory and NASA’s Nancy Grace Roman Space Telescope, which will survey large areas of the sky repeatedly to look for changes over time.
The team’s findings appear today in The Astrophysical Journal.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit: https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the science paper from the The Astrophysical Journal.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Read more about Webb’s impact on exoplanet research
Video: How to Study Exoplanets
Learn more about exoplanets
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Exoplanets
Stars
Universe
Share
Details
Last Updated Apr 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Science & Research Stars The Milky Way The Universe View the full article
-
By NASA
3 min read
NASA’s Juno Back to Normal Operations After Entering Safe Mode
NASA’s Juno flies above Jupiter’s Great Red Spot in this artist’s concept. NASA/JPL-Caltech The spacecraft was making its 71st close approach to Jupiter when it unexpectedly entered into a precautionary status.
Data received from NASA’s Juno mission indicates the solar-powered spacecraft went into safe mode twice on April 4 while the spacecraft was flying by Jupiter. Safe mode is a precautionary status that a spacecraft enters when it detects an anomaly. Nonessential functions are suspended, and the spacecraft focuses on essential tasks like communication and power management. Upon entering safe mode, Juno’s science instruments were powered down, as designed, for the remainder of the flyby.
The mission operations team has reestablished high-rate data transmission with Juno, and the spacecraft is currently conducting flight software diagnostics.The team will work in the ensuing days to transmit the engineering and science data collected before and after the safe-mode events to Earth.
Juno first entered safe mode at 5:17 a.m. EDT, about an hour before its 71st close passage of Jupiter — called perijove. It went into safe mode again 45 minutes after perijove. During both safe-mode events, the spacecraft performed exactly as designed, rebooting its computer, turning off nonessential functions, and pointing its antenna toward Earth for communication.
Of all the planets in our solar system, Jupiter is home to the most hostile environment, with the radiation belts closest to the planet being the most intense. Early indications suggest the two Perijove 71 safe-mode events occurred as the spacecraft flew through these belts. To block high-energy particles from impacting sensitive electronics and mitigate the harmful effects of the radiation, Juno features a titanium radiation vault.
Including the Perijove 71 events, Juno has unexpectedly entered spacecraft-induced safe mode four times since arriving at Jupiter in July 2016: first, in 2016 during its second orbit, then in 2022 during its 39th orbit. In all four cases, the spacecraft performed as expected and recovered full capability.
Juno’s next perijove will occur on May 7 and include a flyby of the Jovian moon Io at a distance of about 55,300 miles (89,000 kilometers).
More About Juno
NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
More information about Juno is available at:
https://www.nasa.gov/juno
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org
2025-049
Share
Details
Last Updated Apr 09, 2025 Related Terms
Juno Explore More
2 min read For Your Processing Pleasure: The Sharpest Pictures of Jupiter’s Volcanic Moon Io in a Generation
Article
1 year ago
1 min read Juno Marks 50 Orbits Around Jupiter
NASA’s Juno mission completed its 50th close pass by Jupiter on April 8, 2023. To…
Article
2 years ago
5 min read 10 Things: Two Years of Juno at Jupiter
NASA’s Juno mission arrived at the King of Planets in July 2016. The intrepid robotic…
Article
7 years ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
After months of groundbreaking research, exploration, and teamwork aboard the International Space Station, NASA’s SpaceX Crew-9 has returned to Earth.
NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, as well as Roscosmos cosmonaut Aleksandr Gorbunov, splashed down safely on March 18, 2025, as a pod of dolphins circled the Dragon spacecraft near Tallahassee, Florida.
NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov aboard the SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida, March 18, 2025.NASA/Keegan Barber Williams and Wilmore made history as the first humans to fly aboard Boeing’s Starliner spacecraft during NASA’s Boeing Crew Flight Test (CFT). Launched June 5, 2024, aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station, the CFT mission was Boeing’s first crewed flight.
Hague and Gorbunov launched to the space station on Sept. 28, 2024, aboard a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA’s SpaceX Crew-9 members pose together for a portrait inside the International Space Station’s Unity module. From left, are NASA astronaut Suni Williams, Roscosmos cosmonaut Aleksandr Gorbunov, and NASA astronauts Nick Hague and Butch Wilmore.NASA During their long-duration mission, the American crew members conducted more than 150 unique experiments and logged over 900 hours of research aboard the orbiting laboratory.
Their work included studying plant growth and development, testing stem cell technology for patient care on Earth, and examining how spaceflight affects materials—insights vital for future deep space missions.
The crew kicked off 2025 with two spacewalks that included removing an antenna assembly from the station’s truss, collecting microbial samples from the orbital outpost’s exterior for analysis by Johnson’s Astromaterials Research and Exploration Science division, installing patches to cover damaged areas of light filters on an X-ray telescope, and more.
Williams now holds the record for the most cumulative spacewalking time by a woman — 62 hours and 6 minutes — placing her fourth among the most experienced spacewalkers in history.
While in orbit, the crew also engaged the next generation through 30 ham radio events with students around the world and supported a student-led genetic experiment.
As part of the CFT, Williams and Wilmore commanded Starliner during in-flight testing and were the first to see the spacecraft integrated in simulations and operate it hands-on in space, evaluating systems like maneuvering, docking, and emergency protocols.
“We’ve learned a lot about systems integrated testing that will pay benefits going forward and lay the groundwork for future missions,” said Wilmore.
Suni Williams and Butch Wilmore participate in an emergency operations simulation in the Boeing Starliner simulator at Johnson Space Center in Houston.NASA/Robert Markowitz Following the test flight, NASA and Boeing are continuing work toward crew certification of the company’s CST-100 Starliner system. Joint teams are addressing in-flight anomalies and preparing for propulsion system testing ahead of the next mission.
Despite the unexpected challenges, including technical issues with the Starliner spacecraft that extended their mission, both Wilmore and Williams said they would do it all over again. Wilmore emphasized his gratitude in being part of testing Starliner’s capabilities, stating, “I’d get on it in a heartbeat.”
After returning to Earth, the crew received a warm welcome from family, colleagues, and fellow astronauts at Johnson Space Center’s Ellington Field. They were greeted by Johnson Acting Director Steve Koerner, who applauded their dedication and resilience.
Suni Williams is greeted by Johnson Acting Director Steve Koerner at Ellington Field in Houston after completing a long-duration science mission aboard the International Space Station.NASA/Robert Markowitz Williams shared a heartfelt embrace with astronaut Zena Cardman, thanking her for “taking one for the team.” Cardman had originally been assigned to Crew-9, but in August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams into Expedition 71/72 for a return on Crew-9. This adjustment meant Cardman and astronaut Stephanie Wilson would no longer fly the mission—a decision that underscored the flexibility and teamwork essential to human spaceflight.
Cardman is now assigned as commander of NASA’s SpaceX Crew-11 mission, set to launch in the coming months to the International Space Station for a long-duration science expedition.
Butch Wilmore receives a warm welcome from NASA astronauts Reid Wiseman and Woody Hoburg at Ellington Field.NASA/Robert Markowitz Williams and Wilmore each brought decades of experience to the mission. Wilmore, a retired U.S. Navy captain and veteran fighter pilot, has logged 464 days in space over three flights. Outside of NASA, he serves as a pastor, leads Bible studies, and participates in mission trips across Central and South America. A skilled craftsman, he also builds furniture and other pieces for his local church.
Growing up in Tennessee, Wilmore says his faith continues to guide him, especially when navigating the uncertainties of flight.
Expedition 72 Flight Engineer Butch Wilmore works inside the International Space Station’s Columbus laboratory module to install the European Enhanced Exploration Exercise Device.NASA Wilmore encourages the next generation with a call to action: “Strap on your work hat and let’s go at it!” He emphasizes that tenacity and perseverance are essential for achieving anything of value. Motivated by a sense of patriotic duty and a desire to help those in need, Wilmore sees his astronaut role as a commitment to both his country and humanity at large.
Wilmore believes he’s challenged every day at NASA. “Doing the right things for the right reasons is what motivates me,” he said.
Expedition 72 Commander Suni Williams monitors an Astrobee robotic free-flyer outfitted with tentacle-like arms containing gecko-like adhesive pads preparing to grapple a “capture cube.”NASA A retired U.S. Navy captain and veteran of three spaceflights, Williams is a helicopter pilot, basic diving officer, and the first person to run the Boston Marathon in space—once in 2007, and again aboard the station in 2025. Originally from Needham, Massachusetts, she brings a lifelong spirit of adventure and service to everything she does.
“There are no limits,” said Williams. “Your imagination can make something happen, but it’s not always easy. There are so many cool things we can invent to solve problems—and that’s one of the joys of working in the space program. It makes you ask questions.”
Hague, a Kansas native, has logged a total of 374 days in space across three missions. A U.S. Space Force colonel and test pilot, he’s served in roles across the country and abroad, including a deployment to Iraq.
“When we’re up there operating in space, it’s focused strictly on mission,” said Hague. “We are part of an international team that spans the globe and works with half a dozen mission control centers that are talking in multiple languages — and we figure out how to make it happen. That’s the magic of human spaceflight: it brings people together.”
Expedition 72 Pilot Nick Hague inside the cupola with space botany hardware that supports the Rhodium Plant LIFE investigation.NASA For Williams, Wilmore, Hague, Gorbunov, and the team supporting them, Crew-9 marks the beginning of a new era of space exploration — one driven by innovation, perseverance, and the unyielding dream of reaching beyond the stars.
Watch the full press conference following the crew’s return to Earth here.
View the full article
-
By Space Force
The DoD is offering a path back to service for military personnel who voluntarily separated or left to avoid the COVID-19 vaccination mandate.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.