Members Can Post Anonymously On This Site
Hubble's 22nd Anniversary Image Shows Turbulent Star-making Region
-
Similar Topics
-
By NASA
5 min read
NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever thanks to a new operational strategy implemented earlier this year. The spacecraft has made great scientific strides in the years since scientists dreamed up a new way to explore gamma-ray bursts, the most powerful explosions in the universe.
“The idea for Swift was born during a meeting in a hotel basement in Estes Park, Colorado, in the middle of a conference,” said John Nousek, the Swift mission director at Pennsylvania State University in State College. “A bunch of astrophysicists got together to brainstorm a mission that could help us solve the problem of gamma-ray bursts, which were a very big mystery at the time.”
Watch to learn how NASA’s Neil Gehrels Swift Observatory got its name.
NASA’s Goddard Space Flight Center Gamma-ray bursts occur all over the sky without warning, with about one a day detected on average. Astronomers generally divide these bursts into two categories. Long bursts produce an initial pulse of gamma rays for two seconds or more and occur when the cores of massive stars collapse to form black holes. Short bursts last less than two seconds and are caused by the mergers of dense objects like neutron stars.
But in 1997, at the time of that basement meeting, the science community disagreed over the origin models for these events. Astronomers needed a satellite that could move quickly to locate them and move to point additional instruments at their positions.
What developed was Swift, which launched Nov. 20, 2004, from Complex 17A at what is now Cape Canaveral Space Force Station in Florida. Originally called the Swift Observatory for its ability to quickly point at cosmic events, the mission team renamed the spacecraft in 2018 after its first principal investigator Neil Gehrels.
Swift uses several methods for orienting and stabilizing itself in space to study gamma-ray bursts.
Sensors that detect the Sun’s location and the direction of Earth’s magnetic field provide the spacecraft with a general sense of its location. Then, a device called a star tracker looks at stars and tells the spacecraft how to maneuver to keep the observatory precisely pointed at the same position during long observations.
Swift uses three spinning gyroscopes, or gyros, to carry out those moves along three axes. The gyros were designed to align at right angles to each other, but once in orbit the mission team discovered they were slightly misaligned. The flight operations team developed a strategy where one of the gyros worked to correct the misalignment while the other two pointed Swift to achieve its science goals.
The team wanted to be ready in case one of the gyros failed, however, so in 2009 they developed a plan to operate Swift using just two.
Swift orbits above Earth in this artist’s concept. NASA’s Goddard Space Flight Center Conceptual Image Lab Any change to the way a telescope operates once in space carries risk, however. Since Swift was working well, the team sat on their plan for 15 years.
Then, in July 2023, one of Swift’s gyros began working improperly. Because the telescope couldn’t hold its pointing position accurately, observations got progressively blurrier until the gyro failed entirely in March 2024.
“Because we already had the shift to two gyros planned out, we were able to quickly and thoroughly test the procedure here on the ground before implementing it on the spacecraft,” said Mark Hilliard, Swift’s flight operations team lead at Omitron, Inc. and Penn State. “Actually, scientists have commented that the accuracy of Swift’s pointing is now better than it was since launch, which is really encouraging.”
For the last 20 years, Swift has contributed to groundbreaking results — not only for gamma-ray bursts but also for black holes, stars, comets, and other cosmic objects.
“After all this time, Swift remains a crucial part of NASA’s fleet,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The satellite’s abilities have helped pioneer a new era of astrophysics called multimessenger astronomy, which is giving us a more well-rounded view of how the universe works. We’re looking forward to all Swift has left to teach us.”
Swift is a key part of NASA’s strategy to look for fleeting and unpredictable changes in the sky with a variety of telescopes that use different methods of studying the cosmos.
Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.
Download high-resolution images on NASA’s Scientific Visualization Studio
By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Nov 20, 2024 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
Astrophysics Gamma-Ray Bursts Goddard Space Flight Center Neil Gehrels Swift Observatory The Universe View the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read
Summary of Aura 20th Anniversary Event
Snippets from The Earth Observer’s Editor’s Corner
The last of NASA’s three EOS Flagships – Aura – marked 20 years in orbit on July 15, 2024, with a celebration on September 18, 2024, at the Goddard Space Flight Center’s (GSFC) Recreational Center. The 120 attendees – including about 40 virtually – reminisced about Aura’s (originally named EOS-CHEM) tumultuous beginning, from the instrument and Principal Investigator (PI) selections up until the delayed launch at the Vandenberg Space Force Base (then Vandenberg Air Force Base) in California. They remembered how Bill Townsend, who was Deputy Director of GSFC at the time, and Ghassem Asrar, who was NASA’s Associate Administrator for Earth Science, spent many hours on site negotiating with the Vandenberg and Boeing launch teams in preparation for launch (after several delays and aborts). The Photo shows the Aura mission program scientist, project scientists (PS), and several instrument principal investigators (PI) shortly before launch.
Photo 1. The Aura (formerly EOS CHEM) mission program scientist, project scientists (PS), and several of instrument principal investigators (PI) at Vandenberg Space Force Base (then Air Force Base) shortly before launch on July 15, 2004. The individuals pictured [left to right] are Reinhold Beer [NASA/Jet Propulsion Laboratory (JPL)—Tropospheric Emission Spectrometer (TES) PI]; John Gille [University of Colorado, Boulder/National Center for Atmospheric Research (NCAR)—High Resolution Dynamics Limb Sounder (HIRDLS) PI]; Pieternel Levelt [Koninklijk Nederlands Meteorologisch Instituut (KNMI), Royal Netherlands Meteorological Institute—Ozone Monitoring Instrument (OMI) PI]; Ernest Hilsenrath [NASA’s Goddard Space Flight Center (GSFC)—Aura Deputy Scientist and U.S. OMI Co-PI];Anne Douglass [GSFC—Aura Deputy PS]; Mark Schoeberl [GSFC—Aura Project Scientist]; Joe Waters [NASA/JPL—Microwave Limb Sounder (MLS) PI]; P.K. Bhartia [GSFC—OMI Science Team Leader and former Aura Project Scientist]; and Phil DeCola [NASA Headquarters—Aura Program Scientist]. NOTE: Affiliations/titles listed for individuals named were those at the time of launch. Photo Credit: Ernest Hilsenrath At the anniversary event, Bryan Duncan [GSFC—Aura Project Scientist] gave formal opening remarks. Aura’s datasets have given a generation of scientists the most comprehensive global view of gases in Earth’s atmosphere to better understand the chemical and dynamic processes that shape their concentrations. Aura’s objective was to gather data to monitor Earth’s ozone layer, examine trends in global air pollutants, and measure the concentration of atmospheric constituents contributing to climate forcing. To read more about Aura’s incredible 20 years of accomplished air quality and climate science, see the anniversary article “Aura at 20 Years” in The Earth Observer.
Bill Guit [GSFC—Aqua and Aura Program Manager and former Aura Mission Operations Lead] gave brief remarks focusing on how Aura became part of the international Afternoon Constellation, or “A-Train,” of satellites, including Aqua, which launched in 2002, and joined by several other NASA and international missions. Aura and Aqua have provided data for over two decades of multidisciplinary Earth science discovery and enhancement.
Both current and former Aura instrument PIs gave brief remarks. Each discussed Aura’s scientific legacy and their instrument’s contributions. They thanked their engineering teams for the successful development and operation of their instruments, and the members of the instrument science teams for developing the algorithms, discovering new science, and demonstrating how the science will serve the public. The PIs were particularly grateful that their instruments or the variants thereof will continue to fly on current and/or future NASA science missions or on international operational satellites.
Steve Platnick
EOS Senior Project Scientist
Share
Details
Last Updated Nov 14, 2024 Related Terms
Earth Science View the full article
-
By NASA
NASA’s work, including its Moon to Mars exploration approach, is advancing science and technology for the Artemis Generation, while also driving significant economic growth across the United States, the agency announced Thursday.
In its third agencywide economic impact report, NASA highlighted how its Moon to Mars activities, climate change research and technology development, and other projects generated more than $75.6 billion in economic output across all 50 states and Washington, D.C., in fiscal year 2023.
“To invest in NASA is to invest in American workers, American innovation, the American economy, and American economic competitiveness,” says NASA Administrator Bill Nelson. “Our work doesn’t just expand our understanding of the universe — it fuels economic growth, inspires future generations, and improves our quality of life. As we embark on the next great chapter of exploration, we are proud to help power economic strength, job creation, scientific progress, and American leadership on Earth, in the skies, and in the stars.”
Combined, NASA’s missions supported 304,803 jobs nationwide, and generated an estimated $9.5 billion in federal, state, and local taxes throughout the United States.
The study found NASA’s Moon to Mars activities generated more than $23.8 billion in total economic output and supported an estimated 96,479 jobs nationwide. For investments in climate research and technology, the agency’s activities generated more than $7.9 billion in total economic output and supported an estimated 32,900 jobs in the U.S.
Additional key findings of the study include:
Every state in the country benefits economically through NASA activities. Forty-five states have an economic impact of more than $10 million. Of those 45 states, eight have an economic impact of $1 billion or more. The agency’s Moon to Mars initiative, which includes the Artemis missions, generated nearly $2.9 billion in tax revenue. These activities provided about 32% of NASA’s economic impact. The agency’s investments in climate change research and technology generated more than $1 billion in tax revenue. Approximately 11% of NASA’s economic impacts are attributable to its investments in climate change research and technology. NASA had more than 644 active international agreements for various scientific research and technology development activities in the 2023 fiscal year. The International Space Station, representing 15 countries and five space agencies, has a predominant role in the agency’s international partnerships. In fiscal year 2023, NASA oversaw 2,628 active domestic and international non-procurement partnership agreements, which included 629 new domestic and 109 new international agreements, active partnerships with 587 different non-federal partners across the U.S., and partnerships in 47 of 50 states. NASA Spinoffs, which are public products and processes that are developed with NASA technology, funding, or expertise, provide a benefit to American lives beyond dollars and jobs. As of result of NASA missions, our fiscal year 2023 tech transfer activities produced 1,564 new technology reports, 40 new patent applications, 69 patents issued, and established 5,277 software usage agreements. Scientific research and development, which fuels advancements in science and technology that can help improve daily life on Earth and for humanity, is the largest single-sector benefitting from NASA’s work, accounting for 19% of NASA’s total economic impact. The study was conducted by the Nathalie P. Voorhees Center for Neighborhood and Community Improvement at the University of Illinois at Chicago.
To review the full report, visit:
https://go.nasa.gov/3NEtUIq
-end-
Meira Bernstein / Melissa Howell
Headquarters, Washington
202-615-1747 / 202-961-6602
meira.b.bernstein@nasa.gov / melissa.e.howell@nasa.gov
Share
Details
Last Updated Oct 24, 2024 LocationNASA Headquarters View the full article
-
By NASA
4 min read
NASA’s Instruments Capture Sharpest Image of Earth’s Radiation Belt
From Aug. 19-20, ESA’s (European Space Agency’s) Juice (Jupiter Icy Moons Explorer) mission made history with a daring lunar-Earth flyby and double gravity assist maneuver, a spaceflight first. As the spacecraft zipped past our Moon and home planet, Juice’s instruments came online for a dry run of what they’ll do when they reach Jupiter. During that time, two of NASA’s onboard instruments added another first to the list: capturing the sharpest-ever image of Earth’s radiation belts – swaths of charged particles trapped in Earth’s magnetic shield, or magnetosphere.
The Jovian Energetic Neutrals and Ions (JENI) instrument, built and managed by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, on behalf of NASA, took the image as Juice soared away from Earth. What it captured is invisible to the human eye. Unlike traditional cameras that rely on light, JENI uses special sensors to capture energetic neutral atoms emitted by charged particles interacting with the extended atmospheric hydrogen gas surrounding Earth. The JENI instrument is the newest generation of this type of camera, building on the success of a similar instrument on NASA’s Cassini mission that revealed the magnetospheres of Saturn and Jupiter.
An illustration showing the trajectory of ESA’s Juice spacecraft during its lunar-Earth gravity assist, featuring a high-resolution ENA image of the million-degree hot plasma halo encircling Earth captured by NASA’s JENI instrument. The white rings denote equatorial distance of 4 and 6 Earth radii. The inset showcases measurements taken by the NASA’s JENI and JoEE instruments during their passage through the radiation belts, revealing a highly structured energetic ion and electron environment. Credit: ESA/NASA/Johns Hopkins APL/Josh Diaz “As soon as we saw the crisp, new images, high fives went around the room,” said Matina Gkioulidou, deputy lead of JENI at APL. “It was clear we had captured the vast ring of hot plasma encircling Earth in unprecedented detail, an achievement that has sparked excitement for what is to come at Jupiter.”
On Aug. 19, JENI and its companion particle instrument Jovian Energetic Electrons (JoEE) made the most of their brief 30-minute encounter with the Moon. As Juice zoomed just 465 miles (750 kilometers) above the lunar surface, the instruments gathered data on the space environment’s interaction with our nearest celestial companion. It’s an interaction scientists expect to see magnified at Jupiter’s moons, as the gas giant’s radiation-rich magnetosphere barrels over them.
On Aug. 20, Juice hurled into Earth’s magnetosphere, passing some 37,000 miles (60,000 km) above the Pacific Ocean, where the instruments got their first taste of the harsh environment that awaits at Jupiter. Racing through the magnetotail, JoEE and JENI encountered the dense, lower-energy plasma characteristic of this region before plunging into the heart of the radiation belts. There, the instruments measured the million-degree plasma encircling Earth to investigate the secrets of plasma heating that are known to fuel dramatic phenomena in planetary magnetospheres.
“I couldn’t have hoped for a better flyby,” said Pontus Brandt, principal investigator of JoEE and JENI at APL. “The richness of the data from our deep-dive through the magnetosphere is astounding. JENI’s image of the entire system we just flew through was the cherry on top. It’s a powerful combination we will exploit in the Jovian system.”
Now after using the Moon’s and Earth’s gravity, Juice’s trajectory has been successfully adjusted for a future encounter with Venus in August 2025. That Venus flyby will serve as a gravitational slingshot, propelling Juice back toward Earth and priming it for two additional flybys in September 2026 and January 2029. Only then will the spacecraft, now boosted into high gear, make its grand arrival at Jupiter in July 2031.
The Johns Hopkins Applied Physics Laboratory, in Laurel, Maryland, manages the JoEE and JENI instruments, which together make up the Particle Environment Package (PEP-Hi) instrument suite, for NASA on ESA’s Juice mission. The JoEE and JENI instruments are part of the Solar System Exploration Program, managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate in Washington.
For more information on NASA’s involvement with ESA’s Juice mission, visit:
https://science.nasa.gov/mission/juice/
Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
Planetary Science
Jupiter
Asteroids
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.