Members Can Post Anonymously On This Site
Italian airline signs up for space-enabled flights
-
Similar Topics
-
By European Space Agency
Today, the European Space Agency signed six contracts that will help position Greece as a key player in the field of Earth observation.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Francisco Rodriguez (aircraft mechanic) services liquid oxygen or LOX on the ER-2 during the Geological Earth Mapping Experiment (GEMx) research project. Experts like Rodriguez sustain a high standard of safety on airborne science aircraft like the ER-2 and science missions like GEMx. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Steve Freeman Operating at altitudes above 99% of the Earth’s atmosphere, NASA’s ER-2 aircraft is the agency’s highest-flying airborne science platform. With its unique ability to observe from as high as 65,000 feet, the ER-2 aircraft is often a platform for Earth science that facilitates new and crucial information about our planet, especially when the plane is part of collaborative and multidisciplinary projects.
“We’re deploying instruments and people everywhere from dry lakebeds in the desert to coastal oceans and from the stratosphere to marine layer clouds just above the surface,” said Kirk Knobelspiesse, an atmospheric scientist at NASA’s Goddard Space Flight Center. “We live on a changing planet, and it is through collaborative projects that we can observe and understand those changes.”
One mission that recently benefitted from the ER-2’s unique capabilities is the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) project. The PACE-PAX mission uses the ER-2’s capabilities to confirm data collected from the PACE satellite, which launched in February 2024.
The PACE observatory is making novel measurements of the ocean, atmosphere, and land surfaces, noted Knobelspiesse, the mission scientist for PACE-PAX. This mission is all about checking the accuracy of those new satellite measurements.
Sam Habbal (quality inspector), Darick Alvarez (aircraft mechanic), and Juan Alvarez (crew chief) work on the network “canoe” on top of the ER-2 aircraft, which provides network communication with the pilot onboard. Experts like these sustain a high standard of safety while outfitting instruments onboard science aircraft like the ER-2 and science missions like the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The ER-2 is the ideal platform for PACE-PAX because it’s about the closest we can get to putting instruments in orbit without actually doing so,” Knobelspiesse said.
The collaborative project includes a diverse team of researchers from across NASA, plus the National Oceanic and Atmospheric Administration (NOAA), the Netherlands Institute for Space Research (SRON), the University of Maryland, Baltimore County, the Naval Postgraduate School, and other institutions.
Similarly, the Geological Earth Mapping eXperiment (GEMx) science mission is using the ER-2 over multiple years to collect observations of critical mineral resources across the Western United States.
“Flying at this altitude means the GEMx mission can acquire wide swaths of data with every overflight,” said Kevin Reath, NASA’s associate project manager for the GEMx mission, a collaboration between the United States Geological Survey (USGS) and NASA.
The ER-2 conducted over 80 flight hours in service of the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is uniquely qualified to conduct the high-altitude scientific flights that this project required, and is based at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The GEMx team collects visible, shortwave infrared, and thermal infrared data using instruments installed onboard the ER-2. Combining these instruments with the aircraft’s capability to fly at high altitudes bears promising results.
“The dataset being produced is the largest airborne surface mineralogy dataset captured in a single NASA campaign,” Reath said. “These data could help inform federal, tribal, state, and community leaders to make decisions that protect or develop our environment.”
Learn more about the ER-2 aircraft.
Learn more about the PACE-PAX mission.
Learn more about the GEMx mission.
Learn more about NASA’s Airborne Science Program.
Share
Details
Last Updated Oct 24, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Airborne Science Earth Science Earth's Atmosphere ER-2 PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Science Mission Directorate Explore More
2 min read Hubble Sees a Celestial Cannonball
The spiral galaxy in this NASA/ESA Hubble Space Telescope image is IC 3225. It looks…
Article 5 hours ago 1 min read PSI Database is Live with New Features to Improve User Experience
Since its launch in 2014, the Physical Sciences Informatics (PSI) system has served as NASA’s…
Article 22 hours ago 7 min read S-MODE, ASIA-AQ, and the Role of ESPO in Complex Airborne Campaigns
Article 7 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Science Projects
Aircraft Flown at Armstrong
Earth Science
View the full article
-
By NASA
5 min read
NASA: Life Signs Could Survive Near Surfaces of Enceladus and Europa
Europa, a moon of Jupiter, and Enceladus, a moon of Saturn, have evidence of oceans beneath their ice crusts. A NASA experiment suggests that if these oceans support life, signatures of that life in the form of organic molecules (e.g. amino acids, nucleic acids, etc.) could survive just under the surface ice despite the harsh radiation on these worlds. If robotic landers are sent to these moons to look for life signs, they would not have to dig very deep to find amino acids that have survived being altered or destroyed by radiation.
“Based on our experiments, the ‘safe’ sampling depth for amino acids on Europa is almost 8 inches (around 20 centimeters) at high latitudes of the trailing hemisphere (hemisphere opposite to the direction of Europa’s motion around Jupiter) in the area where the surface hasn’t been disturbed much by meteorite impacts,” said Alexander Pavlov of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of a paper on the research published July 18 in Astrobiology. “Subsurface sampling is not required for the detection of amino acids on Enceladus – these molecules will survive radiolysis (breakdown by radiation) at any location on the Enceladus surface less than a tenth of an inch (under a few millimeters) from the surface.”
The frigid surfaces of these nearly airless moons are likely uninhabitable due to radiation from both high-speed particles trapped in their host planet’s magnetic fields and powerful events in deep space, such as exploding stars. However, both have oceans under their icy surfaces that are heated by tides from the gravitational pull of the host planet and neighboring moons. These subsurface oceans could harbor life if they have other necessities, such as an energy supply as well as elements and compounds used in biological molecules.
Dramatic plumes, both large and small, spray water ice and vapor from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. NASA/JPL/Space Science Institute The research team used amino acids in radiolysis experiments as possible representatives of biomolecules on icy moons. Amino acids can be created by life or by non-biological chemistry. However, finding certain kinds of amino acids on Europa or Enceladus would be a potential sign of life because they are used by terrestrial life as a component to build proteins. Proteins are essential to life as they are used to make enzymes which speed up or regulate chemical reactions and to make structures. Amino acids and other compounds from subsurface oceans could be brought to the surface by geyser activity or the slow churning motion of the ice crust.
This view of Jupiter’s icy moon Europa was captured by JunoCam, the public engagement camera aboard NASA’s Juno spacecraft, during the mission’s close flyby on Sept. 29, 2022. The picture is a composite of JunoCam’s second, third, and fourth images taken during the flyby, as seen from the perspective of the fourth image. North is to the left. The images have a resolution of just over 0.5 to 2.5 miles per pixel (1 to 4 kilometers per pixel).
As with our Moon and Earth, one side of Europa always faces Jupiter, and that is the side of Europa visible here. Europa’s surface is crisscrossed by fractures, ridges, and bands, which have erased terrain older than about 90 million years.
Citizen scientist Kevin M. Gill processed the images to enhance the color and contrast.
NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0 To evaluate the survival of amino acids on these worlds, the team mixed samples of amino acids with ice chilled to about minus 321 Fahrenheit (-196 Celsius) in sealed, airless vials and bombarded them with gamma-rays, a type of high-energy light, at various doses. Since the oceans might host microscopic life, they also tested the survival of amino acids in dead bacteria in ice. Finally, they tested samples of amino acids in ice mixed with silicate dust to consider the potential mixing of material from meteorites or the interior with surface ice.
This image shows experiment samples loaded in the specially designed dewar which will be filled with liquid nitrogen shortly after and placed under gamma radiation. Notice that the flame-sealed test tubes are wrapped in cotton fabric to keep them together because test tubes become buoyant in liquid nitrogen and start floating around in the dewar, interfering with the proper radiation exposure. Candace Davison The experiments provided pivotal data to determine the rates at which amino acids break down, called radiolysis constants. With these, the team used the age of the ice surface and the radiation environment at Europa and Enceladus to calculate the drilling depth and locations where 10 percent of the amino acids would survive radiolytic destruction.
Although experiments to test the survival of amino acids in ice have been done before, this is the first to use lower radiation doses that don’t completely break apart the amino acids, since just altering or degrading them is enough to make it impossible to determine if they are potential signs of life. This is also the first experiment using Europa/Enceladus conditions to evaluate the survival of these compounds in microorganisms and the first to test the survival of amino acids mixed with dust.
The team found that amino acids degraded faster when mixed with dust but slower when coming from microorganisms.
“Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life-detection measurements by Europa and Enceladus lander missions,” said Pavlov. “Our results indicate that the rates of potential organic biomolecules’ degradation in silica-rich regions on both Europa and Enceladus are higher than in pure ice and, thus, possible future missions to Europa and Enceladus should be cautious in sampling silica-rich locations on both icy moons.”
A potential explanation for why amino acids survived longer in bacteria involves the ways ionizing radiation changes molecules — directly by breaking their chemical bonds or indirectly by creating reactive compounds nearby which then alter or break down the molecule of interest. It’s possible that bacterial cellular material protected amino acids from the reactive compounds produced by the radiation.
The research was supported by NASA under award number 80GSFC21M0002, NASA’s Planetary Science Division Internal Scientist Funding Program through the Fundamental Laboratory Research work package at Goddard, and NASA Astrobiology NfoLD award 80NSSC18K1140.
Share
Details
Last Updated Jul 18, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
Astrobiology Enceladus Europa Goddard Space Flight Center The Search for Life The Solar System Explore More
8 min read Europa’s Ocean
Exploration Stories: Favorite Historical Moments – Robert Pappalardo Interview
Article
7 years ago
2 min read Enceladus: What Lies Beneath?
Article
16 years ago
8 min read Are Water Plumes Spraying from Europa? NASA’s Europa Clipper is on the Case
Finding plumes at Europa is an exciting prospect, but scientists warn it’ll be tricky, even…
Article
3 years ago
View the full article
-
By NASA
Credit: NASA The United States and Saudi Arabia signed a framework agreement that opens new possibilities for cooperation with NASA in areas such as space science, exploration, aeronautics, space operations, education, and Earth science.
NASA Administrator Bill Nelson signed on behalf of the U.S., and CEO of the Saudi Space Agency Mohammed bin Saud Al-Tamimi signed on behalf of the Kingdom of Saudi Arabia.
“Building on my visit to Saudi Arabia earlier this year, I look forward to strengthening our cooperation for the future of exploration,” said Nelson. “We are living in the golden era of exploration – one that is rooted in partnership. This new agreement outlines how we’ll work together, and explore together, for the benefit of humanity.”
Known as the “Framework Agreement Between the Government of the United States of America and the Government of The Kingdom of Saudi Arabia on Cooperation in Aeronautics and the Exploration and Use of Airspace and Outer Space for Peaceful Purposes,” it establishes the overall legal framework to facilitate and strengthen mutually beneficial collaboration between the two countries.
“The agreement represents a turning point in the Kingdom’s journey towards building a strong and prosperous space sector,” said Saudi Space Agency Chairman Abdullah bin Amer Al-Swaha. “It reflects the Kingdom’s firm commitment to progress and innovation in the field of space, and its continuous efforts to enhance its position as an important partner on the global stage for space exploration and scientific discovery.”
The agreement also acknowledges the importance of the Artemis Accords, which Saudi Arabia signed in July 2022, for the transparent, safe, and responsible exploration of space. The commitments of the Artemis Accords, and efforts by the signatories to advance implementation of all its principles, support NASA’s Artemis campaign with its partners and other activities of the accords signatories.
The signing comes two months after Nelson’s visit to Saudi Arabia, where he met with Saudi Space Agency and other senior officials to discuss future partnerships and civil space cooperation for the broader U.S. and Saudi Arabia relationship.
In May 2023, two Saudi mission specialists, Ali Alqarni and Rayyanah Barnawi, were among a group of Axiom Mission-2 private astronauts who launched into orbit aboard a SpaceX Dragon from NASA’s Kennedy Space Center in Florida, highlighting international cooperation. The Axiom Space astronauts conducted scientific research, outreach, and commercial activities aboard the International Space Station.
For more information about NASA’s international partnerships, visit:
https://www.nasa.gov/oiir
-end-
Meira Bernstein / Elizabeth Shaw
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Jul 16, 2024 LocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) Artemis Accords View the full article
-
By NASA
5 Min Read Six Adapters for Crewed Artemis Flights Tested, Built at NASA Marshall
Six adapters for the next of NASA’s SLS (Space Launch System) rockets for Artemis II through Artemis IV are currently at NASA’s Marshall Space Flight Center in Alabama. Engineers are analyzing data and applying lessons learned from extensive in-house testing and the successful uncrewed Artemis I test flight to improve future iterations of the rocket. Credits: NASA/Sam Lott As a child learning about basic engineering, you probably tried and failed to join a square-shaped toy with a circular-shaped toy: you needed a third shape to act as an adapter and connect them both together. On a much larger scale, integration of NASA’s powerful SLS (Space Launch System) rocket and the Orion spacecraft for the agency’s Artemis campaign would not be possible without the adapters being built, tested, and refined at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Marshall is currently home to six adapters designed to connect SLS’s upper stages with the core stages and propulsion systems for future Artemis flights to the Moon.
Preparing Block 1 Adapters for Upcoming Crewed Flights
The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch with the assistance of the interim cryogenic propulsion stage. The propulsion stage is sandwiched between two adapters: the launch vehicle stage adapter and the Orion stage adapter.
The cone-shaped launch vehicle stage adapter provides structural strength and protects the rocket’s flight computers and other delicate systems from acoustic, thermal, and vibration effects.
“The inside of the launch vehicle stage adapter for the SLS rocket uses orthogrid machining – also known as waffle pattern machining,” said Keith Higginbotham, launch vehicle stage adapter hardware manager supporting the SLS Spacecraft/Payload Integration & Evolution Office at Marshall. “The aluminum alloy plus the grid pattern is lightweight but also very strong.”
The launch vehicle stage adapter for Artemis II is at Marshall and ready for shipment to NASA’s Kennedy Space Center in Florida, while engineering teams are completing outfitting and integration work on the launch vehicle stage adapter for Artemis III. These cone-shaped adapters differ from their Artemis I counterpart, featuring additional avionics protection for crew safety.
Just a few buildings over, the Orion stage adapter for Artemis II, with its unique docking target that mimics the target on the interim cryogenic propulsion stage to test Orion’s handling during the piloting demonstration test, is in final outfitting prior to shipment to Kennedy for launch preparations. The five-foot-tall, ring-shaped adapter is small but mighty: in addition to having space to accommodate small secondary payloads, it contains a diaphragm that acts as a barrier to prevent gases generated during launch from entering Orion.
The Artemis III Orion stage adapter’s major structure is complete and its avionics unit and diaphragm will be installed later this year.
Following the first flight of SLS with Artemis I, technicians adjusted their approach to assembling the launch vehicle stage adapter by introducing the use of a rounding tool to ensure that no unintended forces are placed on the hardware.NASA/Sam Lott The Orion stage adapter is complete at Marshall, including welding, painting, and installation of the secondary payload brackets, cables, and avionics unit. The adapter is protected by a special conductive paint that prevents electric arcing in space. NASA astronauts Reid Wiseman and Christina Koch viewed the hardware during a Nov. 27 visit to Marshall.NASA/Charles Beason SLS Block 1B’s payload adapter is an evolution from the Orion stage adapter used in the Block 1 configuration, but each will be unique and customized to fit individual mission needs. “Both the Orion stage adapter and the payload adapter are being assembled in the same room at Marshall,” said Brent Gaddes, lead for the Orion stage adapter in the Spacecraft/Payload Integration & Evolution Office at Marshall. “So, there’s a lot of cross-pollination between teams.”NASA/Sam Lott Unlike the flight hardware, the universal stage adapter’s development test article has flaws intentionally included in its design to test if fracture toughness predictions are correct. Technicians are incorporating changes for the next test article, including alterations to the vehicle damping system mitigating vibrations on the launch pad.NASA/Brandon Hancock Block 1B Adapters Support Bolder Missions
Beginning with Artemis IV, a new configuration of SLS, the SLS Block 1B, will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space. The new stage requires new adapters.
The cone-shaped payload adapter – containing two aluminum rings and eight composite panels made from a graphite epoxy material – will be housed inside the universal stage adapter atop the rocket’s exploration upper stage.
The payload adapter test article is being twisted, shaken, and placed under extreme pressure to check its structural strength as part of testing at Marshall. Engineers are making minor changes to the design of the flight article, such as the removal of certain vent holes, based on the latest analyses.
The sixth adapter at Marshall is a development test article of the universal stage adapter, which will be the largest composite structure from human spaceflight missions ever flown at 27.5 feet in diameter and 32 feet long. It is currently undergoing modal and structural testing to ensure it is light, strong, and ready to connect SLS Block 1B’s exploration upper stage to Orion.
“Every pound of structure is equal to a pound of payload,” says Tom Krivanek, universal stage adapter sub-element project manager at NASA’s Glenn Research Center in Cleveland. Glenn manages the adapter for the agency. “That’s why it’s so valuable that the universal stage adapter be as light as possible. The universal stage adapter separates after the translunar insertion, so NASA will need to demonstrate the ability to separate cleanly in orbit in very cold conditions.”
The Future of Marshall Is Innovation
With its multipurpose testing equipment, innovative manufacturing processes, and large-scale integration facilities, Marshall facilities and capabilities enable teams to process composite hardware elements for multiple Artemis missions in parallel, providing for cost and schedule savings.
Lessons learned from testing and manufacturing hardware for the first three SLS flights in the Block 1 configuration have aided in designing and integrating the SLS Block 1B configuration.
“NASA learns with every iteration we build. Even if you have a room full of smart people trying to foresee everything in the future, production is different from development. It’s why NASA builds test articles and doesn’t just start with the flight article as the first piece of hardware.”
Brent Gaddes
Lead for the Orion stage adapter in the Spacecraft/Payload Integration and Evolution Office
Both adapters for the SLS Block 1 are manufactured using friction stir welding in Marshall’s Materials and Processes Laboratory, a process that very reliably produces materials that are typically free of flaws.
Pioneering techniques such as determinant assembly and digital tooling ensure an efficient and uniform manufacturing process and save NASA and its partners money and time when building Block 1B’s payload adapter. Structured light scanning maps each panel and ring individually to create a digital model informing technicians where holes should be drilled.
“Once the holes are put in with a hand drill located by structured light, it’s simply a matter of holding the pieces together and dropping fasteners in place,” Gaddes said. “It’s kind of like an erector set.”
From erector sets to the Moon and beyond – the principles of engineering are the same no matter what you are building.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.