Members Can Post Anonymously On This Site
Steven Spielberg suggests that aliens could be humans from the future
-
Similar Topics
-
By NASA
NASA’s Artemis campaign will send astronauts, payloads, and science experiments into deep space on NASA’s SLS (Space Launch System) super heavy-lift Moon rocket. Starting with Artemis IV, the Orion spacecraft and its astronauts will be joined by other payloads atop an upgraded version of the SLS, called Block 1B. SLS Block 1B will deliver initial elements of a lunar space station designed to enable long term exploration of the lunar surface and pave the way for future journeys to Mars. To fly these advanced payloads, engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are building a cone-shaped adapter that is key to SLS Block 1B.
At NASA Marshall, the PLA engineering development unit is installed into the 4697-test stand for structural testing. It was then attached to the large cylindrical structure which simulates the Exploration Upper Stage interface. Load lines were then connected to the top of the PLA. The testing demonstrated that it can handle up to three times the expected load.NASA/Samuel Lott The payload adapter, nestled within the universal stage adapter sitting atop the SLS Block 1B’s exploration upper stage, acts as a connecting point to secure a large payload that is co-manifested – or flying along with – the Orion spacecraft. The adapter consists of eight composite panels with an aluminum honeycomb core and two aluminum rings.
Beginning with the Artemis IV mission, SLS Block 1B will feature a new, more powerful upper stage that provides a substantial increase in payload mass, volume, and energy over the first variant of the rocket that is launching Artemis missions I through III. SLS Block 1B can send 84,000 pounds of payload – including both a crewed Orion spacecraft and a 10-metric ton (22,046 lbs.) co-manifested payload riding in a separate cargo compartment – to the Moon in a single launch.
Artemis IV’s co-manifested payload will be the Lunar I-Hab, one of the initial elements of the Gateway lunar space station. Built by ESA (European Space Agency), the Lunar I-Hab provides expanded capability for astronauts to live, work, conduct science experiments, and prepare for their missions to the lunar surface.
Before the Artemis IV mission structure was finalized, NASA engineers needed to design and test the new payload adapter.
“With SLS, there’s an intent to have as much commonality between flights as possible,” says Brent Gaddes, Lead for the Orion Stage Adapter and Payload Adapter in the SLS Spacecraft/Payload Integration & Evolution Office at NASA Marshall.
However, with those payloads changing typically every flight, the connecting payload adapter must change as well.
“We knew there needed to be a lot of flexibility to the payload adapter, and that we needed to be able to respond quickly in-house once the payloads were finalized,” says Gaddes.
Working alongside the robots, NASA’s next generation of engineers are learning from experts with decades of manufacturing expertise as they prepare the metal honeycomb structure substrate. During production, the fingerprints of the engineers are imprinted where metal meets composite. Even after the finishing touches are applied, the right light at the right angle reveals the harmless prints of the adapter’s makers as it launches payloads on SLS that will enable countless discoveries.NASA/Samuel Lott A Flexible Approach
The required flexibility was not going to be satisfied with a one-size-fits-all approach, according to Gaddes.
Since different size payload adapters could be needed, Marshall is using a flexible approach to assemble the payload adapter that eliminates the need for heavy and expensive tooling used to hold the parts in place during assembly. A computer model of each completed part is created using a process called structured light scanning. The computer model provides the precise locations where holes need to be drilled to hold the parts together so that the completed payload adapter will be exactly the right size.
“Structured light has helped us reduce costs and increase flexibility on the payload adapter and allows us to pivot,” says Gaddes. “If the call came down to build a cargo version of SLS to launch 40 metric tons, for example, we can use our same tooling with the structured light approach to adapt to different sizes, whether that’s for an adapter with a larger diameter that’s shorter, or one with a smaller diameter that’s longer. It’s faster and cheaper.”
NASA Marshall engineers use an automated placement robot to manufacture eight lightweight composite panels from a graphite epoxy material. The robot performs fast, accurate lamination following preprogrammed paths, its high speed and precision resulting in lower cost and significantly faster production than other manufacturing methods.
At NASA Marshall, an engineering development unit of the payload has been successfully tested which demonstrated that it can handle up to three times the expected load. Another test version currently in development, called the qualification unit, will also be tested to NASA standards for composite structures to ensure that the flight unit will perform as expected.
“The payload adapter is shaped like a cone, and historically, most of the development work on structures like this has been on cylinders, so that’s one of the many reasons why testing it is so important,” says Gaddes. “NASA will test as high a load as possible to learn what produces structural failure. Any information we learn here will feed directly into the body of information NASA has pulled together over the years on how to analyze structures like this, and of course that’s something that’s shared with industry as well. It’s a win for everybody.”
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
News Media Contact
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
Explore More
2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
A key element of the Gateway lunar space station has entered the cleanroom for final…
Article 3 hours ago 3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions
Article 20 hours ago 4 min read NASA’s Mini Rover Team Is Packed for Lunar Journey
Article 2 days ago Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Humans in Space
Orion Spacecraft
Solar System
View the full article
-
By NASA
Artistic rendering of Intuitive Machines’ Nova-C lander on the surface of the Moon.Credit: Intuitive Machines NASA’s Polar Resources Ice Mining Experiment-1 (PRIME-1) is preparing to explore the Moon’s subsurface and analyze where lunar resources may reside. The experiment’s two key instruments will demonstrate our ability to extract and analyze lunar soil to better understand the lunar environment and subsurface resources, paving the way for sustainable human exploration under the agency’s Artemis campaign for the benefit of all.
Its two instruments will work in tandem: The Regolith and Ice Drill for Exploring New Terrains (TRIDENT) will drill into the Moon’s surface to collect samples, while the Mass Spectrometer Observing Lunar Operations (MSOLO) will analyze these samples to determine the gas composition released across the sampling depth. The PRIME-1 technology will provide valuable data to help us better understand the Moon’s surface and how to work with and on it.
“The ability to drill and analyze samples at the same time allows us to gather insights that will shape the future of lunar resource utilization,” said Jackie Quinn, PRIME-1 project manager at NASA’s Kennedy Space Center in Florida. “Human exploration of the Moon and deep space will depend on making good use of local resources to produce life-sustaining supplies necessary to live and work on another planetary body.”
The PRIME-1 experiment is one of the NASA payloads aboard the next lunar delivery through NASA’s CLPS (Commercial Lunar Payload Services) initiative, set to launch from the agency’s Kennedy Space Center no earlier than Wednesday, Feb. 26, on Intuitive Machines’ Athena lunar lander and explore the lunar soil in Mons Mouton, a lunar plateau near the Moon’s South Pole.
Developed by Honeybee Robotics, a Blue Origin Company, TRIDENT is a rotary percussive drill designed to excavate lunar regolith and subsurface material up to 3.3 feet (1 meter) deep. The drill will extract samples, each about 4 inches (10 cm) in length, allowing scientists to analyze how trapped and frozen gases are distributed at different depths below the surface.
The TRIDENT drill is equipped with carbide cutting teeth to penetrate even the toughest lunar materials. Unlike previous lunar drills used by astronauts during the Apollo missions, TRIDENT will be controlled from Earth. The drill may provide key information about subsurface soil temperatures as well as gain key insight into the mechanical properties of the lunar South Pole soil. Learning more about regolith temperatures and properties will greatly improve our understanding of the environments where lunar resources may be stable, revealing what resources may be available for future Moon missions.
A commercial off-the-shelf mass spectrometer, MSOLO, developed by INFICON and made suitable for spaceflight at Kennedy, will analyze any gas released from the TRIDENT drilled samples, looking for the potential presence of water ice and other gases trapped beneath the surface. These measurements will help scientists understand the Moon’s potential for resource utilization.
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is one of many customers on future flights. PRIME-1 was funded by NASA’s Space Technology Mission Directorate Game Changing Development program.
Learn more about CLPS and Artemis at:
https://www.nasa.gov/clps
View the full article
-
By NASA
You would not expect to see NASA at a car show—but that’s exactly where Johnson Space Center employees were from Jan. 29 to Feb. 2, 2025, driving the future of space exploration forward.
At the Houston AutoBoative Show, a fusion of the auto and boat show, NASA rolled out its Artemis exhibit at NRG Center for the first time, introducing motor enthusiasts to the technologies NASA and commercial partners will use to explore more of the lunar surface than ever before.
Johnson Space Center employees present the Artemis exhibit at the 2025 Houston AutoBoative Show at NRG Center.NASA/Robert Markowitz The Artemis exhibit stood alongside some of the world’s most advanced cars and boats, offering visitors an up-close look at lunar terrain vehicle mockups from Astrolab, Intuitive Machines, and Lunar Outpost. Later this year, NASA will select the rover that will fly to the Moon as humanity prepares for the next giant leap.
In addition to the rovers, the exhibit featured a mockup of JAXA’s (Japan Aerospace Exploration Agency) pressurized rover, designed as a mobile habitat for astronauts, and Axiom Space’s lunar spacesuit, developed for Artemis III astronauts.
These capabilities will allow astronauts to explore, conduct science research, and live and work on the lunar surface.
Strategic Communications Manager for NASA’s Extravehicular Activity and Human Surface Mobility Program Tim Hall (right) shows Johnson Director Vanessa Wyche and Johnson External Relations Office Director Arturo Sanchez the Artemis booth. NASA/Robert Markowitz Johnson Director Vanessa Wyche visited the Artemis exhibit to highlight the importance of these technologies in advancing lunar exploration. Every lesson learned on the Moon will help scientists and engineers develop the strategies, technologies, and experience needed to send astronauts to Mars.
“By bringing the excitement of lunar exploration to the AutoBoative Show, NASA aims to inspire the next generation of explorers to dream bigger, push farther, and help shape humanity’s future in space,” Wyche said.
NASA’s Artemis campaign is setting the stage for long-term human exploration, working with commercial and international partners to establish a sustained presence on the Moon before progressing to Mars.
To make this vision a reality, NASA is developing rockets, spacecraft, landing systems, spacesuits, rovers, habitats, and more.
Vanessa Wyche views Axiom Space’s lunar spacesuit at the exhibit. NASA/Robert Markowitz Some of the key elements on display at the show included:
The Orion spacecraft – Designed to take astronauts farther into deep space. Orion will launch atop NASA’s Space Launch System (SLS) rocket, carrying the crew to the Moon on Artemis missions and safely returning them to Earth. Lunar terrain vehicles – Developed to transport astronauts across the rugged lunar surface or be remotely operated. NASA recently put these rover mockups to the test at Johnson, where astronauts and engineers, wearing spacesuits, ran through critical maneuvers, tasks, and emergency drills—including a simulated crew rescue. Next-gen spacesuits and tools – Through Johnson’s Extravehicular Activity and Human Surface Mobility Program, astronauts’ gear and equipment are designed to ensure safety and efficiency while working on the Moon’s surface. NASA’s Orion Program Strategic Communications Manager Radislav Sinyak (left) and Orion Communications Strategist Erika Peters guide Vanessa Wyche through navigating the Orion spacecraft to dock with the lunar space station Gateway.NASA/Robert Markowitz Guests had the chance to step into the role of an astronaut with interactive experiences like:
Driving a lunar rover simulator – Testing their skills at the wheel of a virtual Moon rover. Practicing a simulated Orion docking – Experiencing the precision needed to connect to Gateway in lunar orbit. Exploring Artemis II and III mission roadmaps – Learning about NASA’s upcoming missions and goals.
Attendees also discovered how American companies are delivering science and technology to the Moon through NASA’s Commercial Lunar Payload Services initiative.
Johnson employees from the Orion program showcase the Orion simulator at the exhibit. From left: Orion Crew and Service Module Office Crew Systems Manager Paul Boehm, Lead Admin Dee Maher, and Orion Crew and Service Module Integration Lead Mark Cavanaugh. From right: Vanessa Wyche, Erika Peters, and Radislav Sinyak.NASA/Robert Markowitz “Everyone can relate to exploration, so it was great to teach people the importance lunar rovers will have on astronauts’ abilities to explore more of the lunar surface while conducting science,” said Victoria Ugalde, communications strategist for the Extravehicular Activity and Human Surface Mobility Program, who coordinated the lunar rovers’ appearance at the show.
Check out the rovers contracted to develop lunar terrain vehicle capabilities below.
Vanessa Wyche explores Intuitive Machines’ Moon RACER rover mockup. NASA/Robert Markowitz Vanessa Wyche explores Lunar Outpost’s Eagle rover mockup. NASA/Robert Markowitz Vanessa Wyche explores Astrolab’s FLEX rover mockup. NASA/Robert Markowitz View the full article
-
By NASA
An image of a coastal marshland combines aerial and satellite views in a technique similar to hyperspectral imaging. Combining data from multiple sources gives scientists information that can support environmental management.John Moisan When it comes to making real-time decisions about unfamiliar data – say, choosing a path to hike up a mountain you’ve never scaled before – existing artificial intelligence and machine learning tech doesn’t come close to measuring up to human skill. That’s why NASA scientist John Moisan is developing an AI “eye.”
Oceanographer John MoisanNASA Moisan, an oceanographer at NASA’s Wallops Flight Facility near Chincoteague, Virginia, said AI will direct his A-Eye, a movable sensor. After analyzing images his AI would not just find known patterns in new data, but also steer the sensor to observe and discover new features or biological processes.
“A truly intelligent machine needs to be able to recognize when it is faced with something truly new and worthy of further observation,” Moisan said. “Most AI applications are mapping applications trained with familiar data to recognize patterns in new data. How do you teach a machine to recognize something it doesn’t understand, stop and say ‘What was that? Let’s take a closer look.’ That’s discovery.”
Finding and identifying new patterns in complex data is still the domain of human scientists, and how humans see plays a large part, said Goddard AI expert James MacKinnon. Scientists analyze large data sets by looking at visualizations that can help bring out relationships between different variables within the data.
Infrared images like this one from a marsh area on the Maryland/Virginia Eastern Shore coastal barrier and back bay regions reveal clues to scientists about plant health, photosynthesis, and other conditions that affect vegetation and ecosystems.John Moisan It’s another story to train a computer to look at large data streams in real time to see those connections, MacKinnon said. Especially when looking for correlations and inter-relationships in the data that the computer hasn’t been trained to identify.
Moisan intends first to set his A-Eye on interpreting images from Earth’s complex aquatic and coastal regions. He expects to reach that goal this year, training the AI using observations from prior flights over the Delmarva Peninsula. Follow-up funding would help him complete the optical pointing goal.
“How do you pick out things that matter in a scan?” Moisan asked. “I want to be able to quickly point the A-Eye at something swept up in the scan, so that from a remote area we can get whatever we need to understand the environmental scene.”
Moisan’s on-board AI would scan the collected data in real-time to search for significant features, then steer an optical sensor to collect more detailed data in infrared and other frequencies.
Thinking machines may be set to play a larger role in future exploration of our universe. Sophisticated computers taught to recognize chemical signatures that could indicate life processes, or landscape features like lava flows or craters, might offer to increase the value of science data returned from lunar or deep-space exploration.
Today’s state-of-the-art AI is not quite ready to make mission-critical decisions, MacKinnon said.
“You need some way to take a perception of a scene and turn that into a decision and that’s really hard,” he said. “The scary thing, to a scientist, is to throw away data that could be valuable. An AI might prioritize what data to send first or have an algorithm that can call attention to anomalies, but at the end of the day, it’s going to be a scientist looking at that data that results in discoveries.”
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center Artificial Intelligence (AI) Goddard Technology People of Goddard Technology Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Dr. Peyman Abbaszadeh poses outside Princeton University, where he is a postdoctoral research associate in the department of civil and environmental engineering. Peyman’s research area is computational hydrology and satellite data assimilation.u003cstrongu003eu003cemu003eCredits: Atieh Alipour / Courtesy of Peyman Abbaszadehu003c/emu003eu003c/strongu003e Editor’s Note: A revised version of this story was posted on February 17, 2023, to include the interviewee’s updated description of his work responsibilities and goals.
Name: Dr. Peyman Abbaszadeh
Title: Science Collaborator
Organization: Hydrological Sciences Laboratory, Sciences and Exploration Directorate (Code 617)
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I work with researchers at Goddard on developing a new generation of hydrologic data assimilation systems by integrating the NASA LIS (Land Information Systems) and ParFlow hydrologic model. My role at Goddard is especially interesting because I get to work with a team of researchers from all over to collaborate on this project. Our goal is to understand the interaction between the land surface and subsurface hydrologic processes and how this complex system is affected by human activities and the environment at different spatial and temporal scales. It is very exciting working closely with outstanding scientists at NASA on solving unknown problems. This is a great opportunity, and I am so excited about that.
Providing access to the information we generate empowers others in the scientific community to use it in their own field studies. Like a recipe, we post all our models and analyses on GitHub with instructions, so that users can utilize them efficiently.
What is your background?
I got my bachelor’s in civil engineering at the University of Tabriz in Iran. Later I moved to Tehran to study hydrology at Tehran Polytechnic University. Later I moved to Tuscaloosa, Alabama, where I got my Ph.D. in water resources at the University of Alabama. Currently, I am continuing my postdoctoral research at Princeton University and reside in New Jersey.
Dr. Peyman Abbaszadeh, a science collaboration researcher at Goddard, discusses the importance of uncertainty in hydrologic studies with high school students in the Water and Climate Academy Week at Watershed Institute, Hopewell Township, New Jersey.u003cstrongu003eu003cemu003eCredits: Lisa Gallagher / Courtesy of Peyman Abbaszadehu003c/emu003eu003c/strongu003e Can you explain how these hydrologic models function?
Hydrologic models simplify the Earth’s surface and subsurface physical processes using a combination of mathematical equations. They are built to predict and estimate the ways in which water flows above and below the surface of the Earth. Knowing this is extremely important as it helps us to better manage water resources and irrigation systems in different locations with different hydroclimate regimes. Hydrologic models are utilized to enhance drought monitoring, flood forecasting, and other early warning systems by providing more accurate and reliable estimates of soil moisture, evapotranspiration, surface runoff, and subsurface water flow among others.
Why did you become a hydrology focused scientist?
I became a hydrologist to study how much water we have access to on Earth and how it moves and stores in the atmosphere, on the land surface, and below the ground while being affected by climate change. Along with conducting research, one of my top priorities is making sure that my research contributes to the education of younger generations. To achieve this, I am so happy that I got the chance to get involved in the outreach and education program at the IGWMC (Integrated GroundWater Modeling Center) at Princeton University, where we promote the education of K-12 students and teachers, as well as community members.
Can you explain why hydrological science is significant to current research?
As we know, climate change is now a climate crisis, as it is warming our planet and disturbing the water cycle by changing the hydrologic processes on the land surface and below the ground. Understanding how the hydrologic variables and fluxes — for example, soil moisture, evapotranspiration, river flow, and groundwater — change over time and interact helps us better prepare and plan for current conditions and accurately forecast future events, such as floods, droughts, wildfires, and heatwaves. These extreme events cause billions of dollars in damage annually in the US and globally. Hydrologic science contributes to a better understanding of the physics behind these processes and their interactions and paves the way for better estimating the likelihood of future events.
What inspires you?
I decided to apply for this position because during my Ph.D. study, there was a constant voice in the back of my head asking how I could apply the skills I had learned and contribute to society. I wanted to reapply my knowledge in the field to help solve real-world water-related problems and challenges. Working on this project helps me see the real footprint of my research.
What do you like to do in your free time?
I love to travel with my wife. Recently we had the opportunity to visit Vermont and New Hampshire, which have beautiful scenery. I also love hiking, so this recent trip was a blast!
How do you relax after a long day spent in the lab?
Card games are another passion of mine, particularly a good poker night. But it’s not a complete end of the day without a good TV show to unwind.
Learn more about LIS here:
https://lis.gsfc.nasa.gov/
By Ranna P. Zahabi
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center People of Goddard Water & Energy Cycle Water on Earth Explore More
8 min read John Moisan Studies the Ocean Through the ‘Eyes’ of AI
Article 14 mins ago 5 min read Mark SubbaRao Brings Data to Life Through Art
Article 14 mins ago 5 min read NASA Scientists & Historian Named AAAS 2022 Fellows
Article 14 mins ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.