Jump to content

Recommended Posts

Posted
Chelyabinsk_a_decade_on_the_Sun_s_invisi Image:

No one saw the Chelyabinsk meteor of 15 February 2013 coming – the largest asteroid to strike Earth in over a century. Just after sunrise on a sunny winter’s day, a 20-metre, 13 000 tonne asteroid struck the atmosphere over the Ural Mountains in Russia at a speed of more than 18 km/s.

The relatively small rock exploded in the atmosphere at an altitude of 30 km, releasing about half a megaton of energy (equivalent to 35 Hiroshima-sized bombs). Two minutes later, the shockwave reached the ground damaging thousands of buildings, breaking windows and injuring roughly 1500 people from flying shards of glass.

Hidden in the glare of our Sun are an unknown number of asteroids, on paths we do not know, many of which could be heading for Earth, and we just don’t know it.

“Asteroids the size of the Chelyabinsk meteor strike Earth roughly every 50-100 years,” explains Richard Moissl, ESA’s Head of Planetary Defence.

“Injuries caused by airbursts or similar events could be prevented if people are informed of an oncoming impact and its predicted effects. With advance warning, local authorities would be able to advise the public to keep well away from windows and glass.”

Richard adds, “ESA’s upcoming NEOMIR mission will detect asteroids like Chelyabinsk coming from the same region in the sky as the Sun, filling a vital gap in our current abilities to predict and plan for hazardous impacts”.

Of course, there is also the risk of an even bigger asteroid impacting Earth from the dayside. Such a scenario is less likely, as the larger the asteroid the fewer there are in the Solar System and the easier they are to detect. In fact, almost all asteroids larger than 1 km have already been discovered.

But as the dinosaurs would tell us, if they could, when a huge asteroid strikes it causes unimaginable damage. Fortunately, as NASA’s DART impact has shown and ESA’s Hera mission will build on, we can deflect such an asteroid.

So, how do we make sure we are prepared? NEOMIR will be located at the “L1” Lagrange point between Earth and the Sun. Undisturbed by Earth’s atmosphere, its infrared telescope will be able to spot asteroids 20 metres and larger currently lurking in the sunlight.

With enough warning, an asteroid impact is the only natural disaster we can prevent.

 

This 3D simulation of the Chelyabinsk meteor explosion by Mark Boslough was rendered by Brad Carvey using the CTH code on Sandia National Laboratories' Red Sky supercomputer. Andrea Carvey composited the wireframe tail.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      How NASA Science Data Defends Earth from Asteroids
      Artist’s impression of NASA’s DART mission, which collided with the asteroid Dimorphos in 2022 to test planetary defense techniques. Open science data practices help researchers identify asteroids that pose a hazard to Earth, opening the possibility for deflection should an impact threat be identified. NASA/Johns Hopkins APL/Steve Gribben The asteroid 2024 YR4 made headlines in February with the news that it had a chance of hitting Earth on Dec. 22, 2032, as determined by an analysis from NASA’s Center for Near Earth Object Studies (CNEOS) at the agency’s Jet Propulsion Laboratory in Southern California. The probability of collision peaked at over 3% on Feb. 18 — the highest ever recorded for an object of its size. This sparked concerns about the damage the asteroid might do should it hit Earth.
      New data collected in the following days lowered the probability to well under 1%, and 2024 YR4 is no longer considered a potential Earth impactor. However, the event underscored the importance of surveying asteroid populations to reveal possible threats to Earth. Sharing scientific data widely allows scientists to determine the risk posed by the near-Earth asteroid population and increases the chances of identifying future asteroid impact hazards in NASA science data.
      “The planetary defense community realizes the value of making data products available to everyone,” said James “Gerbs” Bauer, the principal investigator for NASA’s Planetary Data System Small Bodies Node at the University of Maryland in College Park, Maryland.
      How Scientists Spot Asteroids That Could Hit Earth
      Professional scientists and citizen scientists worldwide play a role in tracking asteroids. The Minor Planet Center, which is housed at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, collects and verifies vast numbers of asteroid and comet position observations submitted from around the globe. NASA’s Small Bodies Node distributes the data from the Minor Planet Center for anyone who wants to access and use it.
      A near-Earth object (NEO) is an asteroid or comet whose orbit brings it within 120 million miles of the Sun, which means it can circulate through Earth’s orbital neighborhood. If a newly discovered object looks like it might be an NEO, information about the object appears on the Minor Planet Center’s NEO Confirmation Page. Members of the planetary science community, whether or not they are professional scientists, are encouraged to follow up on these objects to discover where they’re heading.
      The asteroid 2024 YR4 as viewed on January 27, 2025. The image was taken by the Magdalena Ridge 2.4m telescope, one of the largest telescopes in NASA’s Planetary Defense network. Asteroid position information from observations such as this one are shared through the Minor Planet Center and NASA’s Small Bodies Node to help scientists pinpoint the chances of asteroids colliding with Earth. NASA/Magdalena Ridge 2.4m telescope/New Mexico Institute of Technology/Ryan When an asteroid’s trajectory looks concerning, CNEOS alerts NASA’s Planetary Defense Coordination Office at NASA Headquarters in Washington, which manages NASA’s ongoing effort to protect Earth from dangerous asteroids. NASA’s Planetary Defense Coordination Office also coordinates the International Asteroid Warning Network (IAWN), which is the worldwide collaboration of asteroid observers and modelers.
      Orbit analysis centers such as CNEOS perform finer calculations to nail down the probability of an asteroid colliding with Earth. The open nature of the data allows the community to collaborate and compare, ensuring the most accurate determinations possible.
      How NASA Discovered Risks of Asteroid 2024 YR4
      The asteroid 2024 YR4 was initially discovered by the NASA-funded ATLAS (Asteroid Terrestrial-impact Last Alert System) survey, which aims to discover potentially hazardous asteroids. Scientists studied additional data about the asteroid from different observatories funded by NASA and from other telescopes across the IAWN.
      At first, 2024 YR4 had a broad uncertainty in its future trajectory that passed over Earth. As the planetary defense community collected more observations, the range of possibilities for the asteroid’s future position on Dec. 22, 2032 clustered over Earth, raising the apparent chances of collision. However, with the addition of even more data points, the cluster of possibilities eventually moved off Earth.
      This visualization from NASA’s Center for Near Earth Object Studies shows the evolution of the risk corridor for asteroid 2024 YR4, using data from observations made up to Feb. 23, 2025. Each yellow dot represents the asteroid’s possible location on Dec. 22, 2032. As the range of possible locations narrowed, the dots at first converged on Earth, before skewing away harmlessly. NASA/JPL/CNEOS Having multiple streams of data available for analysis helps scientists quickly learn more about NEOs. This sometimes involves using data from observatories that are mainly used for astrophysics or heliophysics surveys, rather than for tracking asteroids.
      “The planetary defense community both benefits from and is beneficial to the larger planetary and astronomy related ecosystem,” said Bauer, who is also a research professor in the Department of Astronomy at the University of Maryland. “Much of the NEO survey data can also be used for searching astrophysical transients like supernova events. Likewise, astrophysical sky surveys produce data of interest to the planetary defense community.”
      How Does NASA Stop Asteroids From Hitting Earth?
      In 2022, NASA’s DART (Double Asteroid Redirection Test) mission successfully impacted with the asteroid Dimorphos, shortening the time it takes to orbit around its companion asteroid Didymos by 33 minutes. Didymos had no chance of hitting Earth, but the DART mission’s success means that NASA has a tested technique to consider when addressing a future asteroid potential impact threat.
      Artist’s impression of NASA’s upcoming NEO Surveyor mission, which will search for potentially hazardous near-Earth objects. The mission will follow open data practices to improve the chances of identifying dangerous asteroids. NASA/JPL-Caltech To increase the chances of discovering asteroid threats to Earth well in advance, NASA is working on a new space-based observatory, NEO Surveyor, which will be the first spacecraft specifically designed to look for asteroids and comets that pose a hazard to Earth. The mission is expected to launch in the fall of 2027, and the data it collects will be available to everyone through NASA archives.
      “Many of the NEOs that pose a risk to Earth remain to be found,” Bauer said. “An asteroid impact has a very low likelihood at any given time, but consequences could be high, and open science is an       important component to being vigilant.”
      For more information about NASA’s approach to sharing science data, visit:
      https://science.nasa.gov/open-science.
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Apr 10, 2025 Related Terms
      Open Science Planetary Defense Explore More
      2 min read Citizen Scientists Use NASA Open Science Data to Research Life in Space


      Article


      1 week ago
      5 min read Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science


      Article


      1 week ago
      3 min read NASA Open Data Turns Science Into Art


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed. 
      A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
      The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.  
      “We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
      Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks. 
      “It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
      Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth. 
      Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
      The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By USH
      Where do asteroids get all those craters? Countless small circular craters, plus almost always a few that look like massive killers. Even more confusing is that these craters are at a perfect 90º angle, as if an electric arc had run across the surface. 

      According to ThunderboltsProject, the Electric Universe (EU) model, the scars observed on asteroids are caused by electric arcs which cut surface depressions, scoop out material, accelerate it into space, then leave behind clean-cut geological relief. 
      This theory is supported by Electric Discharge Machining (EDM), a process we use every day to shape materials with electric arcs, producing similar clean-cut effects. 
      This brings us to the following hypothesis: Could it be that, instead of craters on asteroids being formed solely by natural space phenomena, that all these craters at a perfect 90º angle with clean-cut geological relief are the result of asteroid mining originated by alien races who use advanced electric arc/laser technology by extracting raw minerals they urgently need for use on their planet or for in-space manufacturing? 
      Asteroids vary greatly in composition, ranging from those rich in volatile substances to those composed of metals like gold, silver, platinum, cobalt, and palladium, alongside more common elements such as iron and nickel. This makes them potential treasure troves of valuable resources. 
      For us as Earthlings, asteroid mining is a technology in its earliest stages and requires significant advances in robotic technology before asteroid mining becomes a reality, however, if more advanced civilizations exist elsewhere in the universe, it's quite plausible that some of them have already turned to asteroid mining long ago. 
      Could their efforts be leaving behind the very craters on asteroids we observe today?
        View the full article
    • By Amazing Space
      5 Asteroids Are Headed Our Way!
    • By European Space Agency
      ESA’s star-surveying Gaia mission has again proven to be a formidable asteroid explorer, spotting potential moons around more than 350 asteroids not known to have a companion.
      View the full article
  • Check out these Videos

×
×
  • Create New...