Members Can Post Anonymously On This Site
Another UAP shot down over Canada and unknown object detected on radar flying over Montana
-
Similar Topics
-
By USH
In December 2024, reports began surfacing about strange events involving flashing streetlights house and building lights. These incidents, initially dismissed as isolated cases, have now been observed on a larger scale, spanning countries such as the U.S., Canada, and the UK.
Some observers theorize that drones or unidentified orbs might be responsible. These objects could emit electromagnetic interference, disrupting electrical systems and causing lights to flicker. However, no concrete evidence has linked these phenomena to drone activity.
Others suggest the lights could be a result of hackers targeting the power grid. Cybercriminals might be testing infrastructure vulnerabilities. While plausible, no definitive proof has emerged to support this explanation.
A more unconventional theory suggests that the flashing lights are a result of a phenomenon known as Streetlight Interference (SLI). Proponents argue that certain individuals, nicknamed "SLIders," possess psychic or psychokinetic abilities that unintentionally influence lighting systems. SLI remains scientifically unverified, with no successful replication in controlled settings.
Some experts believe it might be mechanical faults in the electrical systems or or fluctuations in the power supply. However, this theory seems unlikely due to the widespread and simultaneous nature of the phenomenon, which has been reported across multiple countries, suggesting it is not a localized issue.
Or is this phenomenon linked to extraterrestrial activity? Some argue that aliens might use electromagnetic propulsion systems, potentially interfering with electrical systems, akin to the effects portrayed in films like 'Close Encounters of the Third Kind'.
Could the cause of these flashing lights be a harbinger of an impending global or cosmic event, or might it stem from something entirely beyond our understanding?
The two videos below show, besides the on going mysterious drones/UFO/orb sightings, several locations where street lights are flashing.
View the full article
-
By NASA
Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.
The ten NASA payloads aboard Firefly’s Blue Ghost lander include:
Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center
Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
Learn more about CLPS and Artemis at: http://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
View the full article
-
By NASA
Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 4 Min Read NASA’s Hubble Tracks Down a ‘Blue Lurker’ Among Stars
Evolution of a “Blue Lurker” Star in a Triple System Credits:
NASA, ESA, Leah Hustak (STScI) The name “blue lurker” might sound like a villainous character from a superhero movie. But it is a rare class of star that NASA’s Hubble Space Telescope explored by looking deeply into the open star cluster M67, roughly 2,800 light-years away.
Forensics with Hubble data show that the star has had a tumultuous life, mixing with two other stars gravitationally bound together in a remarkable triple-star system. The star has a kinship to so-called “blue stragglers,” which are hotter, brighter, and bluer than expected because they are likely the result of mergers between stars.
Evolution of a “Blue Lurker” Star in a Triple System Panel 1: A triple star system containing three Sun-like stars. Two are very tightly orbiting. The third star has a much wider orbit. Panel 2: The close stellar pair spiral together and merge to form one more massive star. Panel 3: The merged star evolves into a giant star. As the huge photosphere expands, some of the material falls onto the outer companion, causing the companion to grow larger and its rotation rate to increase. Panels 4-5: The central merged star eventually burns out and forms a massive white dwarf, and the outer companion spirals in towards the white dwarf, leaving a binary star system with a tighter orbit. Panel 6: The surviving outer companion is much like our Sun but nicknamed a “blue lurker.” Although it is slightly brighter bluer than expected because of the earlier mass-transfer from the central star and is now rotating very rapidly, these features are subtle. The star could easily be mistaken for a normal Sun-like star despite its exotic evolutionary history. NASA, ESA, Leah Hustak (STScI) The blue lurker is spinning much faster than expected, an unusual behavior that led to its identification. Otherwise it looks like a normal Sun-like star. The term “blue” is a bit of a misnomer because the star’s color blends in with all the other solar-mass stars in the cluster. Hence it is sort of “lurking” among the common stellar population.
The spin rate is evidence that the lurker must have siphoned in material from a companion star, causing its rotation to speed up. The star’s high spin rate was discovered with NASA’s retired Kepler space telescope. While normal Sun-like stars typically take about 30 days to complete one rotation, the lurker takes only four days.
How the blue lurker got that way is a “super complicated evolutionary story,” said Emily Leiner of Illinois Institute of Technology in Chicago. “This star is really exciting because it’s an example of a star that has interacted in a triple-star system.” The blue lurker originally rotated more slowly and orbited a binary system consisting of two Sun-like stars.
Around 500 million years ago, the two stars in that binary merged, creating a single, much more massive star. This behemoth soon swelled into a giant star, dumping some of its own material onto the blue lurker and spinning it up in the process. Today, we observe that the blue lurker is orbiting a white dwarf star — the burned out remains of the massive merger.
“We know these multiple star systems are fairly common and are going to lead to really interesting outcomes,” Leiner explained. “We just don’t yet have a model that can reliably connect through all of those stages of evolution. Triple-star systems are about 10 percent of the Sun-like star population. But being able to put together this evolutionary history is challenging.”
Hubble observed the white dwarf companion star that the lurker orbits. Using ultraviolet spectroscopy, Hubble found the white dwarf is very hot (as high as 23,000 degrees Fahrenheit, or roughly three times the Sun’s surface temperature) and a heavyweight at 0.72 solar masses. According to theory, hot white dwarfs in M67 should be only about 0.5 solar masses. This is evidence that the white dwarf is the byproduct of the merger of two stars that once were part of a triple-star system.
“This is one of the only triple systems where we can tell a story this detailed about how it evolved,” said Leiner. “Triples are emerging as potentially very important to creating interesting, explosive end products. It’s really unusual to be able to put constraints on such a system as we are exploring.”
Leiner’s results are being presented at the 245th meeting of the American Astronomical Society in Washington, D.C.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Ray Villard
Space Telescope Science Institute, Baltimore, MD
Science Contact:
Emily Leiner
Illinois Institute of Technology, Chicago, IL
Share
Details
Last Updated Jan 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Open Clusters Stars Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble’s Night Sky Challenge
Hubble Multimedia
View the full article
-
By NASA
2 min read
Jovian Vortex Hunters Spun Up Over New Paper
Jumping Jupiter! The results are in, storm chasers! Thanks to your help over the last two years the Jovian Vortex Hunter project has published a catalog of 7222 vortices, which you can download here. Each vortex is an enormous swirling windstorm in Jupiter’s atmosphere–terrifying yet beautiful to behold.
The vortices are labeled by color (“white” is most common, then “dark”, then “red”).
The catalog reveals distributions of vortex sizes, aspect ratios, and locations on the planet. For example, your work showed that white and dark vortices are preferentially found near the poles. These distributions help researchers derive general parameters about Jupiter’s atmosphere that can give us insights about its internal processes and the atmospheres of other planets.
Over 5,000 of you helped build this catalog by performing over a million classifications of images of Jupiter from the JunoCam instrument on NASA’s Juno mission. The details of the catalog are now published in this paper in the Planetary Science Journal. You can also learn more about this amazing volunteer effort in a video you can find on the Jovian Vortex Hunter Results webpage.Thanks to your efforts, The Jovian Vortex Hunter project is out of data. But you can work with JunoCam data in a different way by participating in NASA’s JunoCam citizen science project.
A set of really cool vortices–spinning storms–found by Jovian Vortex Hunters. Data from the JunoCam instrument on NASA’s Juno mission.
Facebook logo @DoNASAScience @DoNASAScience Share
Details
Last Updated Dec 17, 2024 Editor Bill Keeter Related Terms
Citizen Science Planetary Science Division View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).NASA/JPL-Caltech/LANL/CNES/CNRS The review takes a close look the final flight of the agency’s Ingenuity Mars Helicopter, which was the first aircraft to fly on another world.
Engineers from NASA’s Jet Propulsion Laboratory in Southern California and AeroVironment are completing a detailed assessment of the Ingenuity Mars Helicopter’s final flight on Jan. 18, 2024, which will be published in the next few weeks as a NASA technical report. Designed as a technology demonstration to perform up to five experimental test flights over 30 days, Ingenuity was the first aircraft on another world. It operated for almost three years, performed 72 flights, and flew more than 30 times farther than planned while accumulating over two hours of flight time.
The investigation concludes that the inability of Ingenuity’s navigation system to provide accurate data during the flight likely caused a chain of events that ended the mission. The report’s findings are expected to benefit future Mars helicopters, as well as other aircraft destined to operate on other worlds.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s Ingenuity Mars Helicopter used its black-and-white navigation camera to capture this video on Feb. 11, 2024, showing the shadow of its rotor blades. The imagery confirmed damage had occurred during Flight 72. NASA/JPL-Caltech Final Ascent
Flight 72 was planned as a brief vertical hop to assess Ingenuity’s flight systems and photograph the area. Data from the flight shows Ingenuity climbing to 40 feet (12 meters), hovering, and capturing images. It initiated its descent at 19 seconds, and by 32 seconds the helicopter was back on the surface and had halted communications. The following day, the mission reestablished communications, and images that came down six days after the flight revealed Ingenuity had sustained severe damage to its rotor blades.
What Happened
“When running an accident investigation from 100 million miles away, you don’t have any black boxes or eyewitnesses,” said Ingenuity’s first pilot, Håvard Grip of JPL. “While multiple scenarios are viable with the available data, we have one we believe is most likely: Lack of surface texture gave the navigation system too little information to work with.”
The helicopter’s vision navigation system was designed to track visual features on the surface using a downward-looking camera over well-textured (pebbly) but flat terrain. This limited tracking capability was more than sufficient for carrying out Ingenuity’s first five flights, but by Flight 72 the helicopter was in a region of Jezero Crater filled with steep, relatively featureless sand ripples.
This short animation depicts a NASA concept for a proposed follow-on to the agency’s Ingenuity Mars Helicopter called Mars Chopper, which remains in early conceptual and design stages. In addition to scouting, such a helicopter could carry science instruments to study terrain rovers can’t reach. One of the navigation system’s main requirements was to provide velocity estimates that would enable the helicopter to land within a small envelope of vertical and horizontal velocities. Data sent down during Flight 72 shows that, around 20 seconds after takeoff, the navigation system couldn’t find enough surface features to track.
Photographs taken after the flight indicate the navigation errors created high horizontal velocities at touchdown. In the most likely scenario, the hard impact on the sand ripple’s slope caused Ingenuity to pitch and roll. The rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits, snapping all four of them off at their weakest point — about a third of the way from the tip. The damaged blades caused excessive vibration in the rotor system, ripping the remainder of one blade from its root and generating an excessive power demand that resulted in loss of communications.
This graphic depicts the most likely scenario for the hard landing of NASA’s Ingenuity Mars Helicopter during its 72nd and final flight on Jan. 18, 2024. High horizontal velocities at touchdown resulted in a hard impact on a sand ripple, which caused Ingenuity to pitch and roll, damaging its rotor blades. NASA/JPL-Caltech Down but Not Out
Although Flight 72 permanently grounded Ingenuity, the helicopter still beams weather and avionics test data to the Perseverance rover about once a week. The weather information could benefit future explorers of the Red Planet. The avionics data is already proving useful to engineers working on future designs of aircraft and other vehicles for the Red Planet.
“Because Ingenuity was designed to be affordable while demanding huge amounts of computer power, we became the first mission to fly commercial off-the-shelf cellphone processors in deep space,” said Teddy Tzanetos, Ingenuity’s project manager. “We’re now approaching four years of continuous operations, suggesting that not everything needs to be bigger, heavier, and radiation-hardened to work in the harsh Martian environment.”
Inspired by Ingenuity’s longevity, NASA engineers have been testing smaller, lighter avionics that could be used in vehicle designs for the Mars Sample Return campaign. The data is also helping engineers as they research what a future Mars helicopter could look like — and do.
During a Wednesday, Dec. 11, briefing at the American Geophysical Union’s annual meeting in Washington, Tzanetos shared details on the Mars Chopper rotorcraft, a concept that he and other Ingenuity alumni are researching. As designed, Chopper is approximately 20 times heavier than Ingenuity, could fly several pounds of science equipment, and autonomously explore remote Martian locations while traveling up to 2 miles (3 kilometers) in a day. (Ingenuity’s longest flight was 2,310 feet, or 704 meters.)
“Ingenuity has given us the confidence and data to envision the future of flight at Mars,” said Tzanetos.
More About Ingenuity
The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment, Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.
For more information about Ingenuity:
https://mars.nasa.gov/technology/helicopter
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-171
Share
Details
Last Updated Dec 11, 2024 Related Terms
Ingenuity (Helicopter) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Perseverance (Rover) Explore More
3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
Article 2 days ago 3 min read Students Aim High at NASA JPL ‘Candy Toss’ Competition
Article 5 days ago 5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.