Members Can Post Anonymously On This Site
Hubble's Photo Contest Selects Winners
-
Similar Topics
-
By NASA
Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
“Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission.
One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
Judges Needed
NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
To learn more about the challenge, visit:
https://www.nasa.gov/power-to-explore
-end-
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov
Share
Details
Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
-
By NASA
NASA has selected four new crew members to participate in the final simulated mission to Mars in 2024 inside the agency’s Human Exploration Research Analog. From left are Kristen Magas, Anderson Wilder, Obaid Alsuwaidi, and Tiffany Snyder.Credit: C7M4 Crew NASA selected a crew of four research volunteers to participate in its last simulated mission to Mars in 2024 within a habitat at the agency’s Johnson Space Center in Houston.
Obaid Alsuwaidi, Kristen Magas, Tiffany Snyder, and Anderson Wilder will step into the 650-square-foot HERA (Human Exploration Research Analog) facility on Friday, Nov. 1. Once inside, the team will live and work like astronauts for 45 days. The crew will exit the facility on Monday, Dec. 16, after simulating their return to Earth. Jordan Hundley and Robert Wilson also were named as alternate crew members.
Scientists use HERA studies to examine how crew members adapt to isolation, confinement, and remote conditions before NASA sends astronauts on deep space missions to the Moon, Mars, and beyond. The studies provide data about human health and performance in an enclosed environment over time with crews facing different challenges and tasks.
The four volunteers will carry out scientific research and operational tasks throughout their simulated mission, including raising shrimp, growing vegetables, and “walking” on the surface of Mars using virtual reality. They will also experience communication delays lasting up to five minutes as they “near” Mars, allowing researchers to see how crews may respond to the type of delays astronauts will encounter in deep space. Astronauts traveling to the Red Planet may encounter one-way communication delays lasting as long as 20 minutes.
As with the previous HERA missions, crew members will conduct 18 human health studies during the mission through NASA’s Human Research Program. Collectively, the work helps scientists understand how a spaceflight-like environment contributes to the physiological, behavioral, and psychological health of crew members. Insights gleaned from the studies will allow researchers to develop and test strategies aimed at helping astronauts overcome obstacles on deep space missions.
Primary Crew
Obaid Alsuwaidi
Obaid Alsuwaidi serves as captain engineer for the United Arab Emirates’ (UAE) Ministry of Defense. In this role, he provides guidance in civil and marine engineering and addresses challenges facing the organization. Previously, Alsuwaidi worked as a project manager for the defense ministry, helping to streamline productivity, establish high standards of professionalism, and build a team of experts to serve the UAE’s needs.
Alsuwaidi earned a bachelor’s degree in Engineering from Western Sydney University in Australia, followed by a master’s degree in Civil and Environmental Engineering from George Washington University in Washington.
In his free time, Alsuwaidi enjoys horseback riding, swimming, and running.
Kristen Magas
Kristen Magas is an educator and engineer, currently teaching at Tri-County Regional Vocational Technical High School in Franklin, Massachusetts. She also mentors students involved in a NASA design and prototyping program, helping them develop and fabricate products to improve life in space on both International Space Station and Artemis missions. Magas was a finalist for the 2025 Massachusetts State Teacher of the Year.
Magas received bachelor’s and master’s degrees in Civil and Environmental Engineering from Cornell University in Ithaca, New York. She also holds a master’s degree in Vocational Education from Westfield State University in Massachusetts. She has worked as a community college professor as well as a design engineer in municipal water and wastewater treatment.
In her spare time, Magas enjoys coaching robotics and track and field, hiking, biking, and staying connected with her community. She has two children and resides in North Attleboro, Massachusetts with her husband of 25 years.
Tiffany Snyder
Tiffany Snyder is a supervisor for the Cybersecurity Mission Integration Office at NASA, helping to ensure agency missions are shielded against cybersecurity threats. She has more than 20 years of information technology and cybersecurity experience, working with the Air National Guard and as a special agent with the Defense Counterintelligence Security Agency. She joined NASA in 2018 as an IT specialist, and later served as the deputy chief information security officer at NASA’s Kennedy Space Center in Florida, providing cybersecurity oversight.
Snyder holds a bachelor’s degree in Earth Science from the State University of New York at Buffalo and a master’s degree in Digital Forensics from the University of Central Florida in Orlando.
In her spare time, she enjoys playing with her dogs — Artemis and Apollo, gardening, running, and visiting the beach with her family.
Anderson Wilder
Anderson Wilder is a Florida Institute of Technology graduate student working on his doctorate in Psychology. His research focuses on team resiliency and human-machine interactions. He also works in the campus’s neuroscience lab, investigating how spaceflight contributes to neurobehavioral changes in astronauts.
Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology.
Wilder received his bachelor’s degrees in Linguistics and in Psychology from Ohio State University in Columbus. He also holds master’s degrees in Space Studies from International Space University in Strasbourg, France, and in Aviation Human Factors from the Florida Institute of Technology. He is completing another master’s degree in Cognitive Experimental Psychology at Cleveland State University in Ohio.
Outside of school, Wilder works as a parabolic flight coach, teaching people how to fly in reduced gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China.
Alternate Crew
Jordan Hundley
Jordan Hundley is a senior consultant at a professional services firm, offering federal agencies technical and programmatic support. Prior to his current position, he focused on U.S. Department of Defense clients, performing model-based system engineering and serving as a subject matter expert for related operations.
Hundley was commissioned into the U.S. Air Force through the Reserve Officers’ Training Corps program at the University of Central Florida in Orlando. While on active duty, he served as an intercontinental ballistic missile operations officer. He later joined the U.S. Air Force Reserve. Currently, he is a space operations officer with experience in space battle management and electromagnetic warfare.
Hundley earned a master’s degree in Engineering Management from Embry-Riddle Aeronautical University in Daytona Beach, Florida. He is currently pursuing a second master’s degree in Systems Engineering at the university.
Hundley holds a private pilot license and is a certified rescue diver. In his spare time, he enjoys hiking and camping, researching theology, and learning musical instruments.
Robert Wilson
Robert Wilson is a senior researcher and project manager at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. He leads work enhancing human-machine collaborations, developing human prediction models, and integrating that technology into virtual reality and robotic systems designed to operate in isolated, constrained, and extreme environments. His human-machine teaming expertise also extends into responsible artificial intelligence development. He recently participated in a United Nations Roundtable discussion about artificial intelligence in security and defense.
Wilson received his bachelor’s and master’s degrees in Biomedical Engineering from Purdue University in 2013 and 2015, respectively. He earned his doctorate in Mechanical Engineering from the University of Colorado Boulder in 2020.
Outside of work, Wilson is an avid outdoors enthusiast. He enjoys scuba diving, winter camping, backcountry skiing, and hiking through the woods or mountains throughout the year. At home, he also likes to tinker in computer networking and self-hosted systems.
____
NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.
For more information about human research at NASA, visit:
https://www.nasa.gov/hrp
Explore More
4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet
Article 2 days ago 2 min read Station Science Top News: Oct. 11, 2024
Article 3 days ago 4 min read Spooky on the Space Station
Article 3 days ago Keep Exploring Discover More Topics From NASA
Living in Space
Artemis
Human Research Program
Space Station Research and Technology
View the full article
-
By NASA
3 min read
NASA Selects Two Teams to Advance Life Sciences Research in Space
NASA announced two awards Thursday to establish scientific consortia – multi-institutional coalitions to conduct ground-based studies that help address the agency’s goals of maintaining a sustained human presence in space. These consortia will focus on biological systems research in the areas of animal and human models, plants, and microbiology. When fully implemented, the awards for these consortia will total about $5 million.
Space biology efforts at NASA use the unique environment of space to conduct experiments impossible to do on Earth. Such research not only supports the health and welfare of astronauts, but results in breakthroughs on diseases such as cancer and neurodegenerative disorders to help protect humanity down on the ground.
The awards for the two consortia are for the following areas:
Studying space biosphere. The Biology in Space: Establishing Networks for DUrable & REsilient Systems consortium involves a collaborative effort between human/animal, plant, and microbial biologists to ensure an integrated view of the space flight biosphere by enhancing data acquisition, modeling, and testing. It will include participation of more than thirty scientists and professionals working together from at least three institutions. Led by Kristi Morgansen at the University of Washington in Seattle, Washington. Converting human waste into materials for in-space biomanufacturing. The Integrative Anaerobic Digestion and Phototrophic Biosystem for Sustainable Space Habitats and Life Supports consortium will develop an anaerobic digestion process that converts human waste into organic acids and materials that can be used for downstream biomanufacturing applications in space. It will include eight scientists from six different institutions in three different states, including Delaware and Florida. The consortium is led by Yinjie Tang at Washington University in St. Louis, Missouri. Proposals for these consortia were submitted in response to ROSES 2024 Program Element E.11 Consortium in Biological Sciences for a consortium with biological sciences expertise to carry out research investigations and conduct activities that address NASA’s established interests in space life sciences.
NASA’s Space Biology Program within the agency’s Biological and Physical Sciences division conducts research across a wide spectrum of biological organization and model systems to probe underlying mechanisms by which organisms acclimate to stressors encountered during space exploration (including microgravity, ionizing radiation, and elevated concentrations of carbon dioxide). This research informs how biological systems regulate and sustain growth, metabolism, reproduction, and development in space and how they repair damage and protect themselves from infection and disease.
For more information about NASA’s fundamental space-based research, visit https://science.nasa.gov/biological-physical
Share
Details
Last Updated Oct 17, 2024 Contact NASA Science Editorial Team Location NASA Headquarters Related Terms
Biological & Physical Sciences For Researchers Research Opportunities in Space and Earth Sciences (ROSES) Science & Research View the full article
-
By NASA
Credit: NASA Two proposals for missions to observe X-ray and far-infrared wavelengths of light from space were selected by NASA for additional review, the agency announced Thursday. Each proposal team will receive $5 million to conduct a 12-month mission concept study. After detailed evaluation of those studies, NASA expects to select one concept in 2026 to proceed with construction, for a launch in 2032.
The resulting mission will become the first in a new class of NASA astrophysics missions within the agency’s longstanding Explorers Program. The new mission class, Probe Explorers, will fill a gap between flagship and smaller-scale missions in NASA’s exploration of the secrets of the universe.
“NASA’s Explorers Program brings out some of the most creative ideas for missions that help us reveal the unknown about our universe. Establishing this new line of missions – the largest our Astrophysics program has ever competed – has taken that creativity to new heights,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Both of the selected concepts could enable ground-breaking science responsive to the top astrophysics priorities of the decade, develop key technologies for future flagship missions, and offer opportunities for the entire community to use the new observatory, for the benefit of all.”
The National Academies of Sciences, Engineering, and Medicine’s 2020 Decadal Survey, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, recommended NASA establish this new mission class, with the first mission observing either X-ray or far-infrared wavelengths of light. Mission costs for the new Probe Explorers are capped at $1 billion each, not including the cost of the rocket, launch services, or any contributions.
NASA evaluated Probe Explorers proposals based on their scientific merit in alignment with the Decadal Survey’s recommendations, feasibility of development plans, and use of technologies that could support the development of future large missions.
The selected proposals are:
Advanced X-ray Imaging Satellite
This mission would be an X-ray imaging observatory with a large, flat field-of-view and high spatial resolution. It would study the seeds of supermassive black holes; investigate the process of stellar feedback, which influences how galaxies evolve; and help determine the power sources of a variety of explosive phenomena in the cosmos. The observatory would build on the successes of previous X-ray observatories, capturing new capabilities for X-ray imaging and imaging spectroscopy. Principal investigator: Christopher Reynolds, University of Maryland, College Park Project management: NASA’s Goddard Space Flight Center in Greenbelt, Maryland Probe far-Infrared Mission for Astrophysics
This observatory would be a 5.9-foot (1.8-meter) telescope studying far-infrared wavelengths, helping bridge the gap between existing infrared observatories, such as NASA’s James Webb Space Telescope, and radio telescopes. By studying radiant energy that only emerges in the far-infrared, the mission would address questions about the origins and growth of planets, supermassive black holes, stars, and cosmic dust. Principal investigator: Jason Glenn, NASA Goddard Project management: NASA’s Jet Propulsion Laboratory in Southern California The Explorers Program is the oldest continuous NASA program designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the Science Mission Directorate’s astrophysics and heliophysics programs. Since the Explorer 1 launch in 1958, which discovered Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer missions that led to Nobel prizes for their investigators.
The Explorers Program is managed by NASA Goddard for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system and universe.
For more information about the Explorers Program, visit:
https://explorers.gsfc.nasa.gov
-end-
Alise Fisher
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Share
Details
Last Updated Oct 03, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Science Mission Directorate Astrophysics Division Astrophysics Explorers Program View the full article
-
By NASA
Credit: NASA NASA has selected Firefly Aerospace, Inc. of Cedar Park, Texas, to provide launch services for the National Oceanic and Atmospheric Administration (NOAA) QuickSounder mission.
The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity awards during VADR’s five-year ordering period, with a maximum total value of $300 million across all contracts.
The QuickSounder mission will support NOAA’s next generation satellite architecture for its future low Earth orbit program, which will provide mission-critical data for the agency’s National Weather Service, the nation’s weather industry, and other users worldwide.
QuickSounder is the first small satellite in NOAA’s Near Earth Orbit Network (NEON). A collaborative effort between NASA and NOAA, NEON will provide a new approach to developing a new global environmental satellite system by quickly building small to medium-sized satellites with Earth-observing instruments for weather forecasting, disaster management, and climate monitoring. QuickSounder has a launch readiness date of February 2026.
NASA will manage the development and launch of the satellites for NOAA. As the mission lead, NOAA provides funding, technical requirements, and will manage post-launch operations. NASA and NOAA will work with commercial partners to design and build the network’s spacecraft and instruments.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Liz Vlock / Karen Fox
Headquarters, Washington
202-358-1100
elizabeth.a.vlock@nasa.gov / karen.fox@nasa.gov
Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov
Share
Details
Last Updated Sep 23, 2024 LocationNASA Headquarters Related Terms
Science Mission Directorate Joint Agency Satellite Division Kennedy Space Center NASA Directorates NOAA (National Oceanic and Atmospheric Administration) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.