Members Can Post Anonymously On This Site
Who owns these pyramid-shaped UFOs that are flying in restricted airspace?
-
Similar Topics
-
By NASA
9 min read
Launch Your Creativity with These Space Crafts!
In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you some space crafts you can complete at home!
Join us for a journey across the cosmos, starting right in your own pantry.
Stardust Slime
Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars.
Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!
Instructions:
1 5 oz. bottle clear glue ½ tablespoon baking soda food coloring 1 tablespoon contact lens solution 1 tablespoon glitter Directions:
Pour the glue into a bowl
Mix in the baking soda
Add food coloring (we recommend blue, purple, black, or a combination).
Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.
Add glitter a teaspoon at a time, using as much or as little as you like!
Space Suckers
Now let’s travel a little farther, past Earth’s atmosphere and into the realm of space. That’s where Roman is headed once the whole observatory is complete and passes all of its testing!
Roman will scan the skies from space to make it extra sensitive to faint infrared light. It’s harder to see from the ground because our atmosphere scatters and absorbs infrared radiation, which obscures observations.
Some astronauts have reported that space smells metallic or like gunpowder, but don’t worry — you can choose a more pleasant flavor for your space suckers!
Ingredients
2 cups sugar 2/3 cup light corn syrup 2/3 cup water gel food coloring flavor oil edible glitter dust sucker sticks sucker mold Directions
Prep the molds by adding sucker sticks.
Mix sugar, light corn syrup, and water together in a pot on the stove over medium heat.
Turn it up to medium-high heat and let it boil without stirring for about 6 minutes.
Quickly stir in the flavor oil of your choice, gel food coloring, plus as much edible glitter as you like (reserve some for dusting).
Carefully but quickly spoon the mixture into the molds. Spin the sticks so they’re evenly coated. Add a sprinkle of reserved edible glitter and allow to harden.” An image on the left side of the card shows the result: a deep purple sucker with silver glitter embedded.
Fizzy Planets
As we move toward our outer solar system, we’ll pass the orbits of the gas giant planets Jupiter and Saturn. While they don’t actually fizz like the mini planets you can make at home, they do have some pretty exotic chemistry that stems from their extreme pressures, temperatures, and compositions. For example, the hydrogen in their cores behaves like liquid metal instead of a gas. It even conducts electricity!
Roman will use multiple planet-spotting techniques –– microlensing, transits, and direct imaging –– to help us study a variety of worlds, including both gas giants and rocky worlds similar to our own.
Ingredients
3 cups baking soda ¾ cup water food coloring ¼ cup vinegar Directions
Mix a few drops of food coloring into ¼ cup of water and pour into a bowl with 1 cup of baking soda.
Repeat step one two more times using different colors.
Scoop together bits from each mixture to form small balls. Add an extra splash of water to any mixture that’s too crumbly.
Douse the balls with vinegar using an eye dropper or teaspoon and watch them fizz!
Marshmallow Constellations
As we venture farther out into space, we’ll reach some familiar stars! Constellations are groups of stars that appear close together in the sky as seen from Earth. But if you actually journeyed out to them, you might be surprised to discover that they’re often super far apart from each other!
Though constellations aren’t made of stars that are actually bound together in any way, they can still be useful for referencing a cosmic object’s location in the sky. For example, you can use a pair of binoculars or a telescope to take a look at the nebula found beneath Orion’s Belt, marked by the glitter patch in the recipe card above! You can find the constellation printables here.
Supplies
toothpicks or mini pretzel sticks mini marshmallows constellation printables scissors Directions
Attach marshmallows to toothpicks or pretzel sticks using the constellation cards as a guide. Carefully trim toothpicks or pretzel sticks as needed using scissors.
Black Hole Bath Bombs
Black holes –– objects with such strong gravity that not even light can escape their clutches –– lurk unseen throughout our galaxy. Stray too close to one and you’re in for a wild ride! But they aren’t cosmic vacuum cleaners, despite what you may have grown to believe. Just keep your distance and they’ll affect you the same way as any other object of the same mass.
Astronomers have found dozens of black holes in our galaxy by seeing how their gravity affects nearby objects. But there may be 100 million more that lack a visible companion to signal their presence. Roman will find some of these solitary black holes by seeing how their gravity focuses the light from farther stars.
Ingredients
1 cup baking soda ½ cup citric acid ½ cup cornstarch 2 tablespoons coconut oil black food coloring optional: 2 teaspoons essential oil for scent optional: ½ cup Epsom salt Directions
Mix the baking soda, citric acid, cornstarch, and Epsom salt (optional) together in a bowl.
In a separate bowl, mix the coconut oil, food coloring, and essential oil (optional).
Pour the liquid mixture into the dry mixture slowly while whisking it all together. Add a couple tiny splashes of water and whisk it in quickly.
Tightly press the mixture into round molds. Leave them for a few hours and then they’ll be ready to use!
Galaxy in a Jar
Now let’s go so far we can see our Milky Way galaxy from the outside — something many astronomers probably wish they could do at times!
Sort of like how Earth’s atmosphere can affect our view of space, dust in our galaxy can get in the way, too. That makes it easier to study other galaxies than our own in some ways! Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. The mission will build on previous observations to generate the most detailed map of our galaxy to date.
Ingredients
hot water glitter glue glitter super glue (optional) Directions
Mostly fill a 16 oz. glass jar with very hot water, leaving a couple inches of space at the top.
Add at least ¼ cup of glitter glue in colors of your choosing.
Add loose glitter a couple of teaspoons at a time, using as much or as little as you like! You can use a combination of fine and chunky glitter for an extended swirling effect.
Optional: Super glue the lid to the jar.
Once the water has sufficiently cooled, give the jar a gentle shake to see your galaxy swirl!
NOTE: Closely monitor children to ensure the jar doesn’t break.
Pinwheel Galaxy Pinwheels
As we continue our cosmic excursion, you’ll see other galaxies sprinkled throughout space. Many are spiral galaxies, like our Milky Way and the Pinwheel Galaxy from the craft described above. (You can find more detailed instructions and the printout you’ll need here.)
But galaxies come in other varieties, too. Through Roman’s wide, deep surveys, astronomers are sure to see every type. Scientists will study the shapes and distances of billions of galaxies to help us understand dark energy — a mysterious pressure that’s speeding up the universe’s expansion.
Supplies
Pinwheel Galaxy printout pipe cleaner or chopsticks scissors popsicle stick single hole puncher Directions
Cut out the hexagonal shape for your galaxy pinwheel.
Make cuts down the white lines.
Punch holes in the white dots: six around the edges and one in the center.
Turn the paper so it’s face-down.
Thread a pipe cleaner through the center hole.
Going around the circle, fold each flap so the pipe cleaner goes through the hole.
Tie a knot in the pipe cleaner to secure the front of the pinwheel. Wrap the other side of the pipe cleaner around a popsicle stick.
Universe Dough
We’re nearing the end of our voyage, having traveled so far through space and time that we can take in the whole universe! We’ve learned a lot about it, but there are still plenty of open questions. Some of its biggest components, dark energy and dark matter (invisible matter seen only via its gravitational influence), are huge mysteries Roman will explore. And since the observatory will reveal such large, deep swaths of space, who knows what new puzzles we’ll soon uncover!
Ingredients 1 cup flour ½ cup salt 1 tablespoon vegetable oil ½ cup hot water food coloring glitter Directions
Mix flour and salt in a bowl.
Add several drops of food coloring to hot water, and stir into dry mixture along with the oil.
Add as much glitter as you like and knead it into the dough for several minutes.
Add water or flour as needed to adjust the consistency.
Still feeling crafty? Try your hand at these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.
Share
Details
Last Updated Sep 27, 2024 Related Terms
For Kids and Students Nancy Grace Roman Space Telescope NASA STEM Projects View the full article
-
By USH
In the remote wilderness of the Shoria Mountains in southern Siberia, a long-hidden secret has remained untouched for millennia. Far from the reach of modern civilization, a discovery was made that would challenge our understanding of ancient human history.
In 2013, a team of 19 researchers, led by Georgy Sidorov, embarked on an expedition to explore this mysterious region. Their destination was Gora Shoria, a mountain towering 3,600 feet above sea level in a remote part of Russia. Intrigued by reports of strange megalithic structures, the team ventured into this secluded terrain.
What they found was extraordinary: an immense super-megalith dating back roughly 100,000 years that defied conventional history. These massive stone blocks, later known as the Gornaya Shoria Megaliths, appeared to be made of granite, featuring flat surfaces and precise right angles. The most astounding detail was the weight of the stones, exceeding 3,000 tons—making them the largest megaliths ever discovered.
The arrangement of these granite blocks suggested a deliberate design, far beyond what could be explained by natural formations. The blocks were carefully stacked, reaching a height of approximately 140 feet. This raised profound questions: how were such massive stones carved, transported, and assembled in this remote and rugged landscape?
Some researchers have speculated about the existence of a pre-flood civilization, a sophisticated society wiped out by a cataclysmic event.
Also a deep, narrow vertical shaft was uncovered. The shaft, lined with parallel stone slabs, appeared to be human-made.
The walls of the shaft were straight and polished, descending 40 meters (around 130 feet) before opening into a vast underground hall, 36 meters (around 118 feet) high. These walls were constructed from large megalithic blocks, perfectly fitted with minimal gaps. Some of the stones resembled columns, reinforcing the idea of deliberate design. The full explored length of the shaft spanned over 100 meters (approximately 350 feet).
The precision and scale of this structure left no doubt that it was an artificial creation of immense proportions. The polished walls and massive blocks bore a striking resemblance to the shafts within the Great Pyramid of Khufu in Egypt, suggesting a level of architectural sophistication that defies conventional explanations.
Speculation abounds regarding the shaft’s original purpose. Some believe it served an advanced technological function or was part of a larger, undiscovered structure. The exploration team took over an hour to reach the bottom of the shaft, which required significant climbing expertise and endurance. It is believed that additional chambers and channels, still unexplored, may lie even deeper underground.
How could these gigantic 200-ton stone blocks have been assembled with such accuracy, deep underground? What kind of technology was used to construct the shaft and underground chamber?
Some researchers have speculated that it may have been part of an ancient factory, a seismological research device, or even an energy generator. Others believe it was the underground portion of a long-lost pyramid that once stood on the surface of the mountain.
Despite differing theories, we may wonder what ancient forces or lost civilizations left their mark on this remote corner of the world?
View the full article
-
By USH
The Colares UFO incidents refer to a series of unusual sightings and encounters that took place in 1977 on the Brazilian island of Colares. During this period, numerous residents from the Amazon River community of Colares reported being attacked by UFOs.
These mysterious objects allegedly descended from the sky, and in some cases, emerged from the water, emitting intense beams of light. The beams caused physical harm, including burn marks, puncture wounds, fatigue, and memory loss, affecting as many as 2,000 people.
In response to the alarming situation, the Brazilian Air Force initiated a thorough investigation. Years later, their findings were made public, revealing details of this bizarre chapter in UFO history.
Weaponized hosts Jeremy and George speak with Thiago Ticchetti, Brazil's leading UFO investigator and author, to discuss the Colares case and the once-classified military files.
According to Thiago, the Brazilian military captured remarkably clear film footage and photographs of the UFOs. However, he claims that this evidence was sent to the U.S. and has never been released to the public.
In this episode, they also explores various conspiracy theories and recent debunking efforts surrounding the topic of unidentified aerial phenomena (UAP).
The discussion on the Colares UFO incidents begins at the 37-minute mark in the video.
View the full article
-
By NASA
4 Min Read NASA Seeks Input for Astrobee Free-flying Space Robots
iss069e010815 (May 16, 2023) — UAE (United Arab Emirates) astronaut and Expedition 69 Flight Engineer Sultan Alneyadi observes a free-flying Astrobee robotic assistant during the testing of its operations for an upcoming student competition to control the robotic devices. Credits: NASA NASA is seeking input from American companies for the operation and use of a system of free-flying robots aboard the International Space Station as the agency continues to foster scientific, educational, and technological developments in low Earth orbit for the benefit of all.
The colorful, cube-shaped robots – named “Bumble,” “Honey,” and “Queen” – are part of the Astrobee system helping astronauts and researchers perform technology demonstrations, scientific research, and STEM (science, technology, engineering and mathematics) activities in the unique environment of space since 2018.
“Dozens of institutions collaborate with NASA to use the Astrobee system to test new hardware and software technologies,” said Jose Benavides, project manager for the Astrobee facilities at NASA’s Ames Research Center in California’s Silicon Valley, where the system was designed and built. “I’m excited to hear how respondents think Astrobee can continue to advance robotics in space.”
NASA issued a Request for Information to inform strategic planning, inviting industry to provide information to help shape the maturation of robotics in zero gravity to achieve the greatest scientific and exploration value. Responses are due Sept. 27, 2024. To learn more about the Request for Information, visit:
https://sam.gov/opp/7893fe01e7bf4ae69029b5d8915e62c5/view
iss065e389375 (9/20/2021) — NASA astronaut Shane Kimbrough poses with the Astrobee robotic free-flyers in support of the Kibo Robot Programming Challenge (Robo-Pro Challenge). The Kibo-RPC, allows students to create programs to control Astrobee, a free-flying robot aboard the International Space Station (ISS). The battery-powered robots in the Astrobee system fly around the space station’s modules using electric fans for propulsion and “see” their surroundings using lights, cameras, and other sensors. They have interchangeable “arms” that provide ways for the robots to hold objects or keep steady for tasks requiring stability, and magnets to ensure they stay securely docked when recharging.
Working autonomously, or via remote control by astronauts, flight controllers, or researchers on the ground, the robots can be used to off-load time-consuming tasks. For instance, the robots can work independently or collaboratively to assist with routine chores like space station monitoring, maintenance, inventory, experiment documentation, or moving cargo throughout the station. This allows astronauts more time to tackle complex work that only humans can perform.
Astrobee’s versatile design has allowed thousands of hours of testing on hundreds of microgravity experiments. Many have involved astronauts, but the facility also is regularly used by researchers and student teams across the world competing for the opportunity to run their programs on the robots in space.
Further developing human-robotic technology will pave the way for future crewed and uncrewed spacecraft maintenance and exploration tasks done by robots both off-planet and in deep space"
Jonathan Barlow
Astrobee Project Manager
For example, NASA’s ISAAC (Integrated System for Autonomous and Adaptive Caretaking) project, used the Astrobees to study how robots could assist spacecraft, vehicle systems, and ground operators. The technology could help NASA use robot caretakers for critical spacecraft in the agency’s Moon-to-Mars plans, including the Gateway lunar space station and Mars transit habitat vehicle, especially during the months-long periods when these spacecraft will be uncrewed.
“Our ISAAC work has proved out its technology in a high-fidelity space environment because of the ready availability of the capable Astrobee robots,” said Trey Smith, project manager for ISAAC at NASA Ames.
The project demonstrated using multiple Astrobees to autonomously collect the first robot-generated survey of a spacecraft interior. Other ISAAC firsts include the first use of a robot to locate the source of a sound in space, in collaboration with the Bosch USA SoundSee payload team, and the first time robots navigated between modules of a space station. Future robots could use ISAAC technology to transfer cargo between space vehicles or respond to a time-critical fault like a leak due to a micrometeoroid impact, all without human assistance.
“With Astrobee, we’ve learned about flying multiple robots in space alongside humans,” said Jonathan Barlow, project manager for Astrobee at NASA Ames. “Further developing human-robotic technology will pave the way for future crewed and uncrewed spacecraft maintenance and exploration tasks done by robots both off-planet and in deep space.”
The Astrobee Facility, operated out of NASA’s Ames Research Center, provides a free-flying robotic system for space station research and STEM outreach. NASA’s Game Changing Development Program, part of the agency’s Space Technology Mission Directorate, funded Astrobee. NASA’s International Space Station Utilization Office provides ongoing funding.
iss071e464314 (Aug. 12, 2024) — NASA astronaut and Expedition 71 Flight Engineer Jeanette Epps monitors a pair of Astrobee robotic free-flying assistants as they demonstrate autonomous docking maneuvers inside the International Space Station’s Kibo laboratory module. The cube-shaped, toaster-sized devices were operating with a connecting interface system, called CLINGERS with an embedded navigation sensor, that may benefit construction in space.View the full article
-
By USH
In an article posted on January 27, 2018, we discussed Biological UFOs, showcasing many images of different types of biological entities such as zeroids, archons, ebani and flying rods.
Image shows some of the biological UFOs taken from our 2018 article
Now, the theory that some UFOs may be biological entities, which may populate the recesses of free space, possibly originating from another dimension, is not a new one.
Video on Youtube: Astronauts report squid-like entity floating in space
Jacques Vallée, a renowned computer scientist and ufologist, proposed a theory that UFOs and related phenomena might be manifestations of beings from other dimensions or parallel realities existing at different frequencies from our own.
These entities, according to Vallée, may not necessarily be extraterrestrial but could belong to a reality operating under different physical laws. This hypothesis suggests that the phenomenon of alien visitors might originate not from our physical reality or outer space but from alternate realities or parallel universes.
Video on Youtube: Possible biological UFO filmed from passenger plane
Possible biological UFO seen over Iraq
Analyst Bob Spearing of MUFON recently spilled the beans to Daily Mail about these mysterious aerial objects. MUFON has studied drawings and photographs dating back to the 1970s of "squid-like objects" floating in the sky
Image left: squid like entity spotted in Russia 1977 (credit MUFON)Image right: squid like entity spotted in Denmark 1975 (credit MUFON)
These bioforms, living beings, are not only floating in our sky but also for example orbiting the moon, potentially populating the recesses of free space and the cosmic void, remain a mystery.View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.