Members Can Post Anonymously On This Site
Exploring a turbulent tarantula
-
Similar Topics
-
By NASA
Explore This Section Science Science Activation Exploring the Universe Through… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Exploring the Universe Through Sight, Touch, and Sound
For the first time in history, we can explore the universe through a rich blend of senses—seeing, touching, and hearing astronomical data—in ways that deepen our understanding of space. While three-dimensional (3D) models are essential tools for scientific discovery and analysis, their potential extends far beyond the lab.
Space can often feel distant and abstract, like watching a cosmic show unfold on a screen light-years away. But thanks to remarkable advances in technology, software, and science, we can now transform telescope data into detailed 3D models of objects millions or even billions of miles away. These models aren’t based on imagination—they are built from real data, using measurements of motion, light, and structure to recreate celestial phenomena in three dimensions.
What’s more, we can bring these digital models into the physical world through 3D printing. Using innovations in additive manufacturing, data becomes something you can hold in your hands. This is particularly powerful for children, individuals who are blind or have low vision, and anyone with a passion for lifelong learning. Now, anyone can quite literally grasp a piece of the universe.
These models also provide a compelling way to explore concepts like scale. While a 3D print might be just four inches wide, the object it represents could be tens of millions of billions of times larger—some are so vast that a million Earths could fit inside them. Holding a scaled version of something so massive creates a bridge between human experience and cosmic reality.
In addition to visualizing and physically interacting with the data, we can also listen to it. Through a process called sonification, telescope data is translated into sound, making information accessible and engaging in a whole new way. Just like translating a language, sonification conveys the essence of astronomical data through audio, allowing people to “hear” the universe.
To bring these powerful experiences to communities across the country, NASA’s Universe of Learning, in collaboration with the Library of Congress, NASA’s Chandra X-ray Observatory, and the Space Telescope Science Institute, has created Mini Stars 3D Kits that explore key stages of stellar evolution. These kits have been distributed to Library of Congress state hubs across the United States to engage local learners through hands-on and multisensory discovery.
Each Mini Stars Kit includes:
Three 3D-printed models of objects within our own Milky Way galaxy: Pillars of Creation (M16/Eagle Nebula) – a stellar nursery where new stars are born Eta Carinae – a massive, unstable star system approaching the end of its life Crab Nebula – the aftermath of a supernova, featuring a dense neutron star at its core Audio files with data sonifications for each object—mathematical translations of telescope data into sound Descriptive text to guide users through each model’s scientific significance and sensory interpretation These kits empower people of all ages and abilities to explore the cosmos through touch and sound—turning scientific data into a deeply human experience. Experience your universe through touch and sound at: https://chandra.si.edu/tactile/ministar.html
Credits:
3D Prints Credit: NASA/CXC/ K. Arcand, A. Jubett, using software by Tactile Universe/N. Bonne & C. Krawczyk & Blender
Sonifications: Dr. Kimberly Arcand (CXC), astrophysicist Dr. Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project)
3D Model: K. Arcand, R. Crawford, L. Hustak (STScI)
Photo of NASA’s Universe of Learning (UoL) 3D printed mini star kits sent to the Library of Congress state library hubs. The kits include 3D printed models of stars, sonifications, data converted into sound, and descriptive handouts available in both text and braille. Share
Details
Last Updated Apr 14, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation 3D Resources Astrophysics Manufacturing, Materials, 3-D Printing The Universe Explore More
5 min read With NASA’s Webb, Dying Star’s Energetic Display Comes Into Full Focus
Article
5 hours ago
4 min read GLOBE Mission Earth Supports Career Technical Education
Article
3 days ago
2 min read Hubble Captures a Star’s Swan Song
Article
3 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, talks about NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission with Dr. Kate Calvin, the agency’s chief scientist.Credits: Courtesy of Stephanie Getty Name: Dr. Stephanie Getty
Title: Director of the Solar System Exploration Division, Sciences and Exploration Directorate and Deputy Principal Investigator of the DAVINCI Mission
Formal Job Classification: Planetary scientist
Organization: Solar System Exploration Division, Sciences and Exploration Directorate (Code 690)
Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, poses with a full-scale engineering unit of NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) descent sphere.Credits: Courtesy of Stephanie Getty What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
As the Director of the Solar System Exploration Division, I work from a place of management to support our division’s scientists. As the deputy principal investigator of the DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission, I work with the principal investigator to lead the team in implementing this mission to study the atmosphere of Venus.
I love that I get to work from a place of advocacy in support of my truly excellent, talented colleagues. I get to think strategically to make the most of opportunities and do my best to overcome difficulties for the best possible future for our teams. It’s also a fun challenge that no two days are ever the same!
Why did you become a planetary scientist?
In school, I had a lot of interests and space was always one of them. I also loved reading, writing, math, biology, and chemistry. Being a planetary scientist touches on all of these.
My dad inspired me become a scientist because he loved his telescope and photography including of celestial bodies. We watched Carl Sagan’s “Cosmos” often.
I grew up in southeastern Florida, near Fort Lauderdale. I have a B.S. and Ph.D. in physics from the University of Florida.
How did you come to Goddard?
“My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system,” said Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “It’s a priority to encourage effective and open communication.”Credits: Courtesy of Stephanie Getty I had a post-doctoral fellowship in the physics department at the University of Maryland, and a local connection and a suggestion from my advisor led me to Goddard in 2004.
What is most important to you as director of the Solar System Exploration Division, Sciences and Exploration Directorate?
My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system. It’s a priority to encourage effective and open communication. I really try to value the whole person, recognizing that each of us is three-dimensional, with full personal lives. The people create the culture that allows our scientists to thrive and explore.
What are your goals as deputy principal investigator of the DAVINCI mission?
DAVINCI’s goal is to fill long-standing gaps about Venus, including whether it looked more like Earth in the past. Our energetic team brings together science, engineering, technology, project management, and business acumen to build a multi-element spacecraft that will explore Venus above the clouds, and during an hour-long descent through the atmosphere into the searingly hot and high pressure deep layers of the atmosphere near the surface. We hope to launch in June 2029.
What is your proudest accomplishment at Goddard?
I am pleased and proud to be deputy principal investigator on a major mission proposal that now gets to fly. It is an enormous privilege to be entrusted as part of the leadership team to bring the first probe mission back to Venus in over four decades.
What makes Goddard’s culture effective?
Goddard’s culture is at its best when we collectively appreciate how each member of the organization works towards solving our problems. The scientists appreciate the hard, detailed work that the engineers do to make designs. The engineers and project managers are energized by the fundamental science questions that underlie everything we do. And we have brilliant support staff that keeps our team organized and focused.
“Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder,” says Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.”Credits: Courtesy of Stephanie Getty What goes through your mind when you think about which fundamental science question to address and how?
A lot of the research I have done, including my mission work, has been inspired by the question of how life originates, how life originated on Earth, and whether there are or have been other environments in the solar system that could have ever supported life. These questions are profound to any human being. My job allows me to work with incredibly talented teams to make scientific progress on these questions.
It is really humbling.
Who inspired you?
My 10th grade English teacher encouraged us to connect with the natural world and to write down our experiences. Exploring the manifestations of nature connects with the way I approach my small piece of exploring the solar system. I really love the writing parts of my job, crafting the narrative around the science we do and why it is important.
As a mentor, what is the most important lesson you give?
A successful career should reflect both your passion and natural abilities. Know yourself. What feels rewarding to you is important. Learn how to be honest with yourself and let yourself be driven by curiosity.
Our modern lives can be very noisy at work and at home. It can be hard to filter through what is and is not important. Leaving space to connect with the things that satisfy your curiosity can be one way to make the most of the interconnectivity and complexity of life.
Curiosity not only connects us to the natural world, but also to each other. Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder.
I’m looking out my window as we talk. When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.
What are your hobbies?
I love hiking with my kids. Walking through the woods puts me in the moment and clears my mind better than anything else. It gives my brain a chance to relax. Nature gives perspective, it reminds me that I am part of something bigger. Walking in the woods gives me a chance to pause, for example, to notice an interesting rock formation, or watch a spider spinning an impressive web, or spot a frog trying to camouflage itself in a pond, and doing this with my children is my favorite pastime.
Where is your favorite place in the world?
Any campsite at dusk with a fire going and eating s’mores with my family.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) People of Goddard Planetary Science Division Science Mission Directorate The Solar System Explore More
5 min read World Photo Day: Behind the Scenes with Goddard’s Documentary Photographers
Article 18 mins ago 6 min read Jesse Walsh: Possibility at the Cutting Edge of Flight
Article 18 mins ago 6 min read Margaret Dominguez Helps NASA Space Telescopes Open Their ‘Eyes’ to the Universe
Article 18 mins ago View the full article
-
By NASA
ESA/Hubble & NASA, C. Murray This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.
Despite being only 10–20% as massive as the Milky Way galaxy, the Large Magellanic Cloud contains some of the most impressive nearby star-forming regions. The scene pictured here is on the outskirts of the Tarantula Nebula, the largest and most productive star-forming region in the local universe. At its center, the Tarantula Nebula hosts the most massive stars known, weighing roughly 200 times the mass of the Sun.
The section of the nebula shown here features serene blue gas, brownish-orange dust patches, and a sprinkling of multicolored stars. The stars within and behind the dust clouds appear redder than those that are unobscured by dust. Dust absorbs and scatters blue light more than red light, allowing more of the red light to reach our telescopes, which makes the stars appear redder than they are. This image incorporates ultraviolet and infrared light as well as visible light. Using Hubble observations of dusty nebulae in the Large Magellanic Cloud and other galaxies, researchers can study these distant dust grains, helping them better understand the role that cosmic dust plays in the formation of new stars and planets.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.